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Abstract:  Animals hear through complex mechanical–neural signal processing 
systems.  We would like to be able to duplicate this functionality in machines, for 
purposes of recognizing speech and for other sound-related tasks.  Computational 
models on digital computers offer one method for exploring models of auditory 
processing, but in this paper we discuss the use of analog VLSI systems as a 
promising alternative modeling medium.  The analog cochlea model that we 
presented earlier is being modified and extended to include closed-loop adaptation 
and hair-cell functions.  Later processing stages being investigated will exploit 
information in the fine time structure (waveform synchrony) that is apparent in the 
cochlea’s output signals.  Per-channel cross-correlation for binaural localization 
and auto-correlation for pitch and timbre representation are two ways of utilizing 
fine time structure that we have previously experimented with in digital models.  
The analog medium imposes different constraints on these stages, the most 
important result of which is the need to incorporate adaptation at all levels, just as 
in the biological system. 
 
  
Introduction 
 
 The future existence of machines that hear depends on our ability to understand 
hearing and to implement effective real-time models of hearing.  Modeling the 
cochlea (inner ear) has led in recent years to moderate performance gains in several 
research speech recognition systems, but research in hearing and its applications to 
such problems has been hampered by the tremendous computational burden of 
complex signal processing models on digital computers.  In order to make progress 
toward long-sought breakthroughs in this area, we need to be able to more quickly 
evaluate our theories about hearing by testing them in use with real sounds in real 
applications, preferably in real time.  Analog VLSI technology offers an inherently 
real-time implementation medium with a variety of interesting properties. 
 As a first step in building machines that hear, we have implemented an analog 
electronic cochlea that incorporates much of the current state of knowledge about 
cochlear structure and function.  We are currently extending this CMOS VLSI 



 

 

hearing system to include closed-loop adaptation and other models of neural 
processing in  the auditory nuclei of the brain stem. 
 
 
Background 
 
  The problems we must solve to build perception machines are mostly similar to 
those that nature had to solve biologically in the evolution of intelligent animal 
behavior.  The key problems in sound perception are to cope with a very wide 
dynamic range of loudness and to separate sounds on the basis of their properties, 
such as frequency content and time structure.  We believe that, by developing 
circuits that solve the same problems using imprecise analog components, we will 
increase our understanding of how animals hear.  The levels of the auditory system 
beyond the cochlea, all the way through linguistic processing in the cortex, present 
a range of interesting challenges for this work.  
 The interpretation of a large and complex literature of conflicting ideas on the 
physiology of hearing continues to be an important aspect of this research; we 
present our own view of how some of the controversies in this area can be resolved 
in a coherent functional framework.  The approach used to model the nonuniform 
fluid-dynamic wave medium of the cochlea as a cascade of filters is based on the 
observation that the properties of the medium change only slowly and that wave 
energy is therefore not reflected to any significant degree.  The effect of active 
outer hair cells is included as a variable negative damping term; the variable 
damping mechanism is shown to be effective as a wide-range automatic gain 
control (AGC) associated with a moderate change in sharpness of tuning with 
signal level.  The system is not highly tuned in the sense of a high-Q resonator, but 
rather achieves a high-gain pseudoresonance by combining the modest gains of 
many stages.  Sharp iso-output tuning curves result from the interaction of the 
adaptive gains and the filters, as has been observed experimentally in both neural 
frequency threshold curves and  basilar membrane iso-velocity curves.   
 In this view, there is no conflict between the observed sharp tuning curves and 
the corresponding broad filter transfer functions derived from the hydrodynamic 
model.  Various other nonlinear and masking effects are similarly explained with 
the same active-adaptive system framework. 
 
 
 Cochlear Model Summary 
 

 The analog cochlear model presented earlier  is based on modeling wave 
propagation in the cochlea as a cascade of simple filters that are linear in the short 



 

 

term but that can non-linearly adapt their characteristics in response to perceived 
sound level; this section briefly summarizes the model. 

 The cascaded filter stages, which may also be viewed as delay-line stages, are 
second-order lowpass filters (i. e., just a pair of poles, no zeros) with nearly 
maximally-flat response.  Later stages of the cascade have longer time constants, 
or lower cutoff frequencies, to model the frequency–place mapping of the cochlea.  
To model wave amplification due to active outer hair cells in the cochleas, the 
filter stage Q values are increased from the maximally-flat condition of Q=0.707 
up to as much as Q= 0.9.  The modest gain peaks thereby introduced in each stage 
combine to yield a significant peak in the overall cascade transfer function.  The 
peak gain of this pseudoresonance is variable over a range of 50 dB or more by 
small changes in the Q values of the stages. 

  

 
 
 A standard CMOS VLSI technology (a logic process, not a more specialized 
memory or analog process) is used to produce transconductance amplifiers, which 
are used in combination with fixed capacitors to make adjustable second-order 
filter stages.  The time constants (or corner frequencies) and Q values of the filter 
stages are set by the bias voltages applied to current sources in the 
transconductance amplifiers.  In the micropower subthreshold region where the 
circuits are operated (to achieve the long time constants needed for audio 
processing), bias currents and time constants are exponential functions of bias 
voltages and of transistor offset voltages (usually known as threshold variations). 
 Small transistor mismatches can lead to severe gain variations in our cascade 
structure, so the automatic adaptation of the Q values is necessary not only to 
accommodate a wide dynamic range of sound loudness, but also to accommodate a 
range a variation in the primitive components.  We believe that similar constraints 
apply to the architecture of biological sensory systems, and that this need to adapt 
to low-quality components explains the existence of adaptation at all levels of 
neural systems. 
 Taps along the cascade (either every stage or every several stages) bring out 
channels of filtered sound pressure as seen at the inner hair cells, which transduce 
mechanical vibrations into neural signals.  The information beyond this level is 
represented in the biological system as action potentials on the cochlear nerve, with 
statistics that faithfully represent the detailed half-wave rectified filtered 



 

 

waveforms (at least up to frequencies of several kilohertz).  Cochlear models have 
traditionally ignored this fine time structure information, or treated it in very 
simple ways, and have concentrated instead on reducing the information to a rate 
of nerve firing.  There is mounting evidence in the hearing research community 
that the most important information about sound is to be found in the time 
structure, rather than in the rate.  Therefore we seek new and improved models of 
the signal processing functions of the hair cells, the primary auditory neurons, and 
the auditory nuclei of the brainstem, which take input from the cochlea and send 
signals back to the cochlea to effect adaptation.  These levels are fairly tightly 
coupled and must be jointly modeled; in the sections that follow, however, we try 
to discuss them separately. 
 
 
Closed-loop Adaptation 
 
 The cochlea chips built and tested so far have not included on-chip closed-loop 
control of the Q bias voltages, so the Q values were set by off-chip manual 
adjustment to establish reasonable test and measurement conditions.  Our 
previously described computational model of coupled AGC in the cochlea  used 
four stages of variable gain after a time-invariant filter cascade.  Further 
background and results on the use of AGC in a cochlear model has also been 
presented .  Using a detection and coupled smoothing approach similar to those, 
but controlling the analog time-varying filter Q’s and gains instead of separate gain 
stages, would yield similar overall amplitude compression results, but possibly 
problematic dynamics. 
 The overall amplitude response of sensory systems (perceived or measured 
response vs. input stimulus level) is often viewed as approximately logarithmic, or 
as a power law with a low exponent, over a fairly wide range of stimulus levels.  
An AGC that is built using a forward-path gain element that divides by the 
smoothed detected output level implements a square-root compressor—that is, a 
power law with an exponent of one-half, which is not compressive enough to be 
realistic.  By modifying such an AGC to use a cascade of two identical gain 
elements, each controlled by the same feedback signal from the output level, the 
overall response becomes a cube-root compressor, which is becoming more 
realistic.  As even more such gain elements are cascaded together, the response 
quickly approaches logarithmic, which is hard to distinguish from a power law of 
low exponent.  By feeding back spatially smoothed output level signals into the 
filter cascade, the analog cochlea’s coupled AGC uses many filter stages as 
variable gains, and thereby approaches an overall logarithmic response. 

 



 

 

 
 

 For this kind of AGC response, it is not important that the individual variable 
gains be the reciprocals of the detected output level.  To make the system more 
realistic, especially at low levels, the gains must have some fixed maximum value 
when the output level is zero.  The output of the system will grow initially as the 
square-law response of a non-coherent power detector for very weak inputs, and 
the effective power-law exponent will quickly decrease until at high input levels 
the system response is approximately logarithmic. 
 Therefore, the circuits that we are experimenting with determine the maximum 
Q or maximum gain from fixed (or manually adjusted or very slowly adapting) 
bias voltages, and subtract off an amount in proportion to the detected output level.  
The detected output level is fed back through a time-space smoothing filter made 
of capacitors and a spatially-coupled resistor network such as the ones being used 
in Mead’s retina chips . 
 The dynamics and stability of such AGC systems are tricky due to the inclusion 
of the filter dynamics in the AGC loop.  We do not yet have a satisfactory analysis 
or conclusion on this issue. 
  
 
Hair Cells and Primary Auditory Neurons 
 
 Each output tap from the filter cascade provides a voltage representing the 
pressure wave in the cochlea.  These signals must be further processed to yield a 
representation of basilar membrane motion as seen by the inner hair cells, and to 
then produce a representation of the hair cell’s output.  In the biological system, 
the hair cells detect some combination of displacement and velocity, depending on 
the characteristic frequency and the viscosity of the fluid that is bending the hairs.  
The hair cell’s output is a release of neurotransmitter to the primary auditory 
neurons (of the spiral ganglion), which then convert the signal into a statistical 
form as action potentials.  We may choose to have the output of the electronic 
cochlea either as an analog representation of the neurotransmitter release, or as a 
pulse representation, depending on the plan for later processing stages. 



 

 

 Conversion of the tap outputs to hair cell stimuli involves a spatial 
differentiation (difference between adjacent taps) to convert pressure to 
acceleration, followed by a time integration or two to convert to velocity or 
displacement.  A direct analog implementation in this sequence would be very 
problematic, however, due to offsets in the differentiator that would then be 
integrated.  A better approach is to combine these two linear operations and the 
following nonlinear hair cell detection and adaptation function into a single 
functional approximation that has a simple circuit implementation.   
 John Lazzaro of Caltech has already built and tested several generations of hair 
cell and neuron circuits, based on differentiator-like circuits with hysteresis, which 
will be the subject of a later work.  His neuron circuits are those developed by 
Carver Mead of Caltech for his retina model—they are essentially integrate-to-
threshold models of retinal ganglion cells that would be appropriate for use as 
spiral ganglion cells as well.  Inclusion of ideas such as leaky integrators and 
refractory periods longer than pulse lengths has been seen to improve neuron 
realism, and could easily be adapted to the analog systems as well.  In any case, a 
rapid (< 1 ms) adaptation (gain control) within the hair cell model is essential to 
emphasize onsets and produce the precise timing needed for both binaural and 
monaural processing. 
 The relative advantages of basing later stages of processing on pulse 
representations vs. continuous analog representations are not yet well understood.  
The pulse representation lends itself to logic-based correlation and pulse or digital 
delay techniques, which may be more compact but more noise-producing and 
power-consuming than continuous analog techniques.  The analog techniques 
employ continuous representations, with delays implemented as filter stages and 
with correlation implemented as bilinear multipliers.  The pulse representation may 
need several pulse streams per hair-cell channel in order to achieve a reasonable 
signal-to-noise ratio in the statistical representation.  Mead and Lazzaro, in 
collaboration with the author, have already experimented with a few versions of 
analog and pulse correlators; these stages of processing are discussed briefly in the 
following two sections. 
 
 
Binaural Processing 
 
 Multiple sound signals, such as speech and interfering noises, can be fairly well 
separated out, localized, and interpreted by human listeners with normal binaural 
hearing.  In order for machines to approach this level of performance, a rich 
representation of binaural sounds is essential.  Brain structures of the auditory 
brainstem are essentially two-dimensional sheets with different properties of the 



 

 

signal mapped along different spatial dimensions—we need to implement model 
systems that produce representations of similar dimensionality, which is also the 
dimensionality of a silicon chip.  Cross correlating corresponding channels from 
two cochleas to produce a two-dimensional image, as originally suggested by 
Jeffress in 1948 , is the obvious first step. 
 The most promising technology for binaural processing presently seems to be to 
use the same delay-line building blocks that make up the cochlea as the delay 
elements in a cross-correlator to extract time-of-arrival-difference cues for 
lateralization.  Separate circuits, also based on the continuous analog 
representation, can be used for spectral amplitude comparisons, which are useful 
for both lateral and vertical localization (assuming appropriate external ears for 
microphones).  Just as in the cochlea, adaptive AGC functions need to be 
integrated into these circuits, not because the signal has a wide dynamic range at 
this level, but because the system must adapt out its own wide range of gain 
variation. 
 In the biological system, binaural comparisons are done in the superior-olivary 
complex (time difference in the medial superior olive and magnitude difference in 
the lateral superior olive).  The superior-olivary complex is the first place in the 
auditory nervous system that receives inputs from both ears, and is also the origin 
of the neural signals that return to the cochlea to adjust the activity of the outer hair 
cells.  This arrangement probably helps to keep the gains of the two ears changing 
together, rather than separately, to make it easier to do amplitude comparisons.  
The same technique should be employed in our analog models, though each of two 
cochleas should also do some of its own slow adaptation to adjust for differences 
between them. 
 
 
Monaural Processing 
 
 A structure similar to the binaural cross-correlator can be used monaurally to 
extract pitch and timbre cues.  The rich two-dimensional representation that such a 
model produces has been shown by Weintraub  to be quite useful for separating out 
the sounds of two people speaking at once, even without the advantage of binaural 
signals. 
 An important difference between the binaural and monaural correlators is the 
range of delay values that must be implemented.  In the binaural case, delays of 
only one millisecond or less are adequate to span the range of interaural delays for 
a human-size head; a delay–bandwidth product of about 5 cycles is probably 
adequate to maintain reasonable lateral cue sharpness.  In the monaural case, our 
experiments with correlagram representations  lead us to want a delay-bandwidth 



 

 

product of 10 to 20 cycles, with total delays of at least 20 ms.  The delay-
bandwidth product of a cascade of second-order delay stages is about 0.25•N3/4 for 
a delay line of N identical stages (or for a delay line of about N stages per octave in 
a variable-delay structure).  Thus only about 50 stages (per channel) of delay are 
needed for the binaural cross-correlator, while several hundred stages are needed 
for each channel of auto-correlation to achieve high-resolution pitch and timbre 
cues.  This may be sufficient motivation to look for alternative representations and 
delay structures—the cost of delay lines for digital or pulse representations grows 
only linearly with delay-bandwidth product. 
 In order to cover a wide range of delays in the monaural correlator (for 
representation of formant periods, pitch periods, rhythms, and other time-domain 
effects of various scales in a uniform representation), the delay-line could be built 
of stages with exponentially increasing time delays, just as in the cochlea, rather 
than as a constant delay per stage which might be more appropriate in the binaural 
correlator.  This variable-delay scheme is simple to implement with analog filter 
stages, and is not consistent with the above-mentioned pulse and digital techniques.  
Hence, we have an interesting trade-off space to explore in designing these 
structures.  Little is known about how the biological system deals with these issues, 
or even about what monaural processing functions are done in what brain 
structures. 
 
 
Conclusions 
 
 This short paper has rambled through some ideas that we hope will help outline 
the issues involved in using analog VLSI techniques to build machines that hear.  
This line of work is continuing with the involvement of several people at Apple 
and Caltech and elsewhere, in both simulations and working real-time chips.  We 
expect to be able to demonstrate exciting real-time auditory correlagram displays 
soon, so stay tuned.  Machines that understand what they hear will follow 
eventually. 
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