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ABSTRACT 

 The cost of speech signal processing and other 
computationally intensive functions is increasingly 
influenced by power consumption as products are made 
smaller and more portable.  That is, in portable products, 
weight and battery life are bigger issues than silicon area 
and total computational capability.  A recent emphasis on 
the power problem within the VLSI signal processing 
community has led to an understanding of how parallelism 
can significantly reduce the cost of a system by greatly 
reducing clock speed, supply voltage, and power 
consumption, even though at the expense of silicon area 
and other measures of efficiency.  Several different kinds 
and degrees of parallelism, including massive analog 
parallelism, should be considered in planning to reduce the 
total cost of speech signal processors.  In this tutorial 
paper, recent and older ideas are reviewed with respect to 
their potential applicability to modern products, as well as 
with respect to their difficulties.     

 

1. INTRODUCTION AND MOTIVATION 
Speech processing and other signal processing systems 

have enough regularity and inherent parallelism that they 
are amenable to a wide range of optimization techniques.  
The VLSI academic and industrial communities have 
traditionally focussed much more emphasis on 
optimization of silicon area and clock speed than of power 
consumption, though with portable products becoming 
popular this trend is changing quickly.  Analytical 
optimization techniques sometimes lead to general rules of 
thumb; for example, designers know to break up amplifiers 
and drivers into stages with gains not much above e to 
optimize delay [1].  But when the rules of thumb come 
from the optimization of a single variable, they will be at 
odds with the optimization of a more relevant joint cost 
function.  Since system-level cost functions have been 
difficult to define at the chip design stage, and since good 

joint optimization tools have been difficult to get and to 
use, chip designers may still be applying rules of thumb 
that lead to very power-inefficient, and hence costly, 
product designs.   

Historically, we have seen how applying huge 
numbers of transistors to a problem can reduce the cost of 
a system (as in the use of a DSP chip instead of a few 
inductors and capacitors to implement a filter).  In the age 
of portable products, we should think in terms of applying 
huge numbers of transistors to reduce the size and weight 
of the battery.  The examples surveyed in this tutorial 
support the idea of using parallelism of slow processing 
units as a power-saving alternative to the single fast central 
processor that characterizes many of today's desktop and 
portable products. 

1.1.  Power as a Primary Cost Factor 
In today's desktop computers, the silicon chips and 

associated components tend to cost more than the power 
supply and cooling systems.  While this may also be true in 
portable computing products, the weight and limited 
operating time of the portable power source implies 
another kind of cost to the user.  The option of increasing 
the energy density by using more exotic batteries is 
available, but at a very high cost.  In new generation RISC-
based desktop systems, getting rid of the heat is an 
increasingly costly problem.  Overall, it seems that 
electrical energy is very cheap, but storing and transporting 
it, and getting rid of its waste heat, are increasingly 
expensive in more compact and higher-performance 
products.  Mead has argued that computer system cost has 
stayed proportional to power consumption over many 
generations of machines, and that we should expect this 
trend to continue [2]. 

In spite of this situation, we do not have good 
institutionalized ways of estimating and trading off the true 
costs associated with the power consumption of our 
computational subsystems.  In this tutorial, we emphasize 
power as the primary cost factor that needs more explicit 



 

consideration at all levels of design, in hopes of raising the 
level of attention paid to power by chip and product 
designers. 

To make things worse, other kinds of hard-to-evalulate 
costs are often involved in system optimization.  For 
example, Narkiewicz and Burleson [3] present techniques 
that “allow tradeoffs between VLSI costs, performance and 
precision,”  while Orailoglu and Karri [4] “systematically 
explore the three-dimensional design space spanned by 
cost, performance, and fault-tolerance constraints.”  
Apparently performance, precision, and fault-tolerance are 
important dimensions that, like power, haven’t yet been 
integrated into “system cost functions.” 

1.2.  Portable Speech Processors 
Portable sound and speech products tend to have 

severe real-time computational requirements relative to 
other portable products, and hence a bigger problem with 
battery weight and running time.  We need to develop a 
bag of tricks to attack this general problem at all levels. 

An important property of speech processors is that 
they have a bursty load.  Voice coders, recognizers, 
synthesizers, recorders, etc. only need to process speech 
when speech is present.  An important source of power 
efficiency in such systems is the ability to shut down or 
slow down parts of the system when their capabilities are 
not needed.  A less obvious power saving technique is to 
move some of the work from the fast real-time mode into a 
slower and more efficient background mode, for example 
in a voice-mail compressor.  In section 2 we explain how a 
slow mode not only reduces the power level, but can also 
reduce the total energy consumption. 

1.3.  “Are DSP Chips Obsolete?” 
In a recent paper, Stewart, Payne, and Levergood [5] 

posed the question of what a specialized DSP chip is good 
for in the age of fast RISC chips.  Using the DEC Alpha 
architecture [6] as an example, they argue that it is 
generally preferred to let a fast RISC chip do the kinds of 
computational jobs, such as speech processing, that have 
been largely relegated to DSP chips during the last decade.  
Unfortunately, they totally ignore power as a cost factor, 
and propose a solution that is about an order of magnitude 
more energy hungry than the DSP alternative.  We discuss 
how optimizing a chip for speed leads to its inefficient use 
of energy, again using the DEC Alpha RISC chip as an 
example. 

1.4.  Previous Surveys 
There are several previous excellent surveys of power-

saving techniques and the size-cost-speed-voltage-power 
trends and limits of CMOS technology (mostly from an 
academic perspective).  An early study by Swanson and 
Meindl (Stanford) [7] explores CMOS logic structures at 
very low supply voltages.  Mead and Conway (Caltech and 

Xerox) [8] provide in-depth chapters on the “Physics of 
Computational Systems”, including technology scaling and 
energetics of very low voltage CMOS, as well as an 
introduction to the kinds of “Highly Concurrent Systems” 
architectures that can take advantage of low-speed low-
power operation (with contributions from Kung and 
Leiserson of CMU and Browning and Rem of Caltech).  
Vittoz (Swiss CSEM and EPFL) describes “Micropower” 
techniques for portable electronic devices [9].  Mead 
(Caltech) [2] emphasizes power costs and the power 
efficiency of special-purpose and analog signal processing 
implementations in “Neuromorphic” systems.  Burr, 
Williamson, and Peterson (Stanford) [10] survey low-
power issues in modern high-performance signal 
processing systems, emphasizing current projects at 
Stanford.  Brodersen, Chandrakasan, and Sheng (Berkeley) 
[11] provide an excellent tutorial with specific examples of 
choices at many levels that can improve power efficiency 
in signal processors.   

In the present tutorial, rather than introducing new 
ideas, we attempt to assemble ideas to support an attitude 
adjustment of design engineers, emphasizing the 
conclusions of Mead and Conway [8] over a decade ago, 
that “In real systems, the cost of power, cooling, and 
electrical bypassing often exceeds the cost of the chips 
themselves.  Hence any discussion of the cost of 
computation must include the energy cost of individual 
steps of the computation process.” and “Perhaps the 
greatest challenge that VLSI presents to computer science 
is that of developing a theory of computation that 
accommodates a more general model of the costs involved 
in computing.” 

2.  POWER CONSUMPTION BASICS 
Power consumption in modern CMOS circuits is 

usually dominated by dynamic power related to the 
charging and discharging of circuit nodes between the two 
power supply voltage levels that represent logic 1 and logic 
0.  Dynamic power can be expressed as: 

P = fCV
2  

where f  is the clock frequency, C  is the effective total 
capacitance being switched at the rate of one transition per 
clock cycle, and V  is the supply voltage. 

The effective total capacitance is computed as a 
weighted sum of all the node capacitances in the circuit, 
with each node’s weight equal to its number of logic 
transitions per clock cycle, averaged over the conditions of 
interest.  Clock nodes have two transitions per cycle, so 
they count double, while static logic nodes may average 
one-half transition per cycle or less; precharged logic 
nodes are typically somewhere in between. 



 

2.1.  Reducing Power 
It might almost go without saying that power can be 

reduced in three ways: 
 • Reduce Frequency 
 • Reduce Capacitance 
 • Reduce Voltage  

Importantly, the voltage factor applies twice, so any 
reduction in voltage is worth twice as much power savings 
as a proportionate reduction in frequency or capacitance.  
But the supply voltage may also be the most difficult 
parameter for the designer to change freely, due to system 
and compatibility constraints.  Typically reducing the 
supply voltage will also require reducing the clock 
frequency, so other changes will be needed to maintain 
performance. 

Reductions in effective switched capacitance can 
come from two main sources:  physical-level and circuit-
level optimizations that reduce node capacitance per logic 
gate, and logical/architectural reorganizations that reduce 
the number of nodes or gates being switched.  Avoiding 
clock and data transitions in portions of the processor that 
are not needed for a particular part of the computation is 
one technique that pays off well.  Making low-level 
“sizing” optimization criteria favor power rather than 
speed will result in smaller transistors, smaller cell layouts, 
and shorter wires, all contributing to lower capacitance. 

Reductions in clock frequency are generally 
acceptable only if there is some other change that allows 
the system computational requirements to be met.  For 
example, the average clock frequency can be reduced if the 
clock frequency is made variable and the computational 
requirements are variable.  Or the clock frequency can be 
cut by a factor of N if N copies of the processor are used 
and can efficiently share the computational load.  In this 
case, the silicon area and capacitance increase by a factor 
of N, but the lower clock rate will allow a lower supply 
voltage and a great power savings.  This kind of trading of 
frequency and voltage against area and parallelism is a 
large under-exploited source of power savings. 

CMOS circuits also dissipate power during switching 
due to the fact that the transistor charging a node doesn't 
quite turn off before the other transistor tries to discharge 
the node.  This “crossover” or “short-circuit” power is 
again proportional to the effective switching frequency and 
to a “strength times slowness” factor that scales pretty 
much like the capacitance; but this power is also a very 
expansive function of supply voltage (between quadratic 
and exponential).  If the supply voltage is reduced to 
around twice the typical transistor threshold, the crossover 
power involves only subthreshold conduction, and is 
largely negligible (as long as threshold magnitudes are 
large compared to kT/q); but for 3-V and 5-V chips it may 
be a significant power as well as a significant contributor 

to power supply noise spikes.  DC power is also significant 
if threshold voltages are reduced to the point where the 
turned-off transistor has a substantial leakage.  Burr and 
Peterson [12] analyze the contribution of crossover power 
and DC power at very low threshold and supply voltages, 
where they are important considerations in establishing 
limits to ultra low power operation. 

2.2.  Circuit Speed versus Voltage 
Operating a system at a supply voltage higher than the 

clock frequency requires is a big waste of power.  The 
system designer should think about scaling supply voltage 
and system clock frequency together for best efficiency.  
Using self-timed circuits or voltage-dependent clock 
oscillators, it is possible to make the system speed adapt to 
conditions such as dropping battery voltage, changing 
temperature, etc.  For example, the technique of Von 
Kaenel et al. [13] can be used to drop the supply voltage to 
match the logic speed, or can be turned around to adjust 
the logic speed to match the supply voltage. 

The designer needs to know what to expect in the 
speed versus voltage tradeoff even when the system 
handles it automatically.  The expected scaling between 
voltage and speed depends on what voltage range is 
considered; figure 1 characterizes some possibilities. 
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Figure 1.  A crude characterization of power supply 
voltage ranges available to the chip and system designer, 
and an approximate speed-voltage curve (solid) shown 
with a linear approximation (dashed). 

The speed of logic circuits has traditionally been 
approximated as linear with supply voltage, as in the 
dashed line in figure 1.  This “rule of thumb” was 
reasonable for supply voltages large compared to a 
threshold voltage, in older technologies that did not show 
short-channel effects and velocity saturation within the 
typical range of supply voltages.  According to this 
approximation, each 1% increase in speed costs a 1% 
increase in voltage, a 2% increase in switching energy, and 
a 3% increase in power. 



 

Many designers have internalized a second-order 
correction derived from the standard quadratic MOS 
transistor model—speed varies as supply voltage minus 
threshold, and hence is more than proportional to supply 
voltage:   

! f

f
>
!V

V
   "old scaling"  

This relation tells designers that reducing the supply 
voltage has a relatively large speed penalty—a rule that is 
no longer true at typical standard voltages.   

A relevant cost function that can be optimized is the 
voltage-time product Vt , or equivalently Et

2 , where 
switching energy E  is proportional to V2 , and t  is the 
logic delay, inversely proportion to f .  According to “old 
scaling”, this cost function is optimized by letting V  
increase toward infinity.  In modern fine-line processes, 
velocity saturation is a dominant effect in the 3-V to 5-V 
region, so circuit speed actually varies less than linearly 
with supply voltage: 

! f

f
<
!V

V
   "new scaling"  

The actual optimum of the Et2  criterion will occur at the 
voltage that defines the boundary between the old scaling, 
where velocity saturation was negligible, and the new 
scaling, where it dominates the threshold effect.  This 
critical voltage is decreasing as the technology scales, and 
is already below 3 Volts, according to the speed derating 
curve of the Philips HLL (High-speed Low-power Low-
voltage) CMOS logic family [14].  Many designers have 
not yet internalized this new reality, so they continue to 
pay more than a 3% power increase for each 1% speed 
increase by keeping the supply voltage around 3 to 5 Volts. 

Other sensible criteria that may be analytically 
optimized, as reviewed by Burr and Peterson [12], include 
the energy-time product Et  and the switching energy E .  
Optimizing E  puts zero weight on speed, which is 
probably not useful in current products, but is useful in 
deriving lower bounds to sensible supply voltages.  At the 
optimum, where supply voltage is approximately equal to 
threshold voltage, power will be proportional to speed, but 
only very low speeds will be achievable.  As the cost of 
transistors continues to fall, making up for the speed loss 
with increased parallelism will push efficient designs 
toward this limit. 

Optimizing Et  means that each 1% increase in speed 
is worth a 1% increase in switching energy and a 2% 
increase in power.  Burr and Peterson [12] show that this 
criterion is optimized when the supply voltage is equal to 
three times the threshold voltage, ignoring velocity 
saturation and subthreshold effects.  If velocity saturation 
is already significant at this voltage, the actual optimum 
voltage will be even lower. 

If clock frequency varies linearly with voltage, power 
varies as the cube.  In modern technologies, the power will 
be less than cubic at traditional high voltages, and more 
than cubic at sufficiently low voltages.  But the large 
power effect at low voltages comes with a corresponding 
clock speed penalty.  The switching energy or energy per 
clock cycle is still proportional to V2 .  Therefore, if a 
system can be built with a slow low-voltage “background” 
mode and a faster “foreground” or “real-time” mode, 
computations that can be deferred to the slower mode can 
be done much more energy efficiently. 

3.  DIGITAL PARALLELISM OPTIONS 
At the recent IEEE Workshop on VLSI Signal 

Processing, there was considerable excitement around the 
topic of low-power techniques.  In addition to the tutorial 
of Brodersen et al. [11] mentioned above, there were 
several contributed papers on low-power techniques [15, 
16], as well as a number of papers on architecture 
alternatives that provide a range of examples that the 
techniques could be applied to or evaluated on.  For this 
tutorial, I draw digital parallelism examples mainly from 
that workshop and its predecessors, and from my own 
work.  Varying styles and degrees of parallelism 
distinguish the architectural options. 

One useful tool for coarse architecture-level 
evaluation of alternatives is the “power factor 
approximation” (PFA) method of Chau and Powell [17, 
18], which provides a method of estimating the energy cost 
of a system based on the number and size of 
multiplication, storage, and communication operations, etc.  
Berkelaar and Theeuwen [19] provide a tool that directly 
manipulates designs to explore the area-power-delay space.   
In both of these approaches, however, since they do not 
consider supply voltage among the parameters under the 
control of the designer, some of their conclusions do not 
apply when supply voltage is jointly optimized with 
architecture.  Alternatively, Chandrakasan et al. [15] 
specifically consider architecture and algorithm 
transformations jointly with voltage optimization to 
minimize power at a specified throughput, and find that the 
optimum supply voltage on real-world examples is often 
about 1.5 Volts, somewhat below the Et optimum. 

3.1.  Bit-Serial vs. Bit-Parallel 
An obvious level of parallelism familiar in most 

digital computing machines is bit-level parallelism.  
Microprocessor chips have been advancing exponentially 
in this dimension, though at a relatively slow rate (4-bit to 
64-bit machines in 20 years is a doubling every 5 years, 
which is quite slow compared to the rate of improvement 
of other metrics in this field).  There is little reason to 
expect or want an increase in the size of arithmetic 
operands beyond 32, 64, or 80 bits, depending on the 



 

application, and therefore little opportunity for increased 
parallelism of this sort.   

At the other end of the spectrum, bit-serial methods 
are attractive because they reduce interconnect complexity 
and make it easier to employ other levels of parallelism.  
Lyon [20, 21, 22] has shown both dedicated (functionally 
parallel) and programmable (SIMD) bit-serial architectures 
for signal processing, and Wawrzynek and Mead have 
shown a configurable architecture [23, 24, 25].  The 
shallow logic depths and simple interconnect topologies of 
these designs were exploited for speed and area efficiency, 
but can also contribute to energy efficiency in 
configurations that meet the throughput needs at a lower 
clock rate and supply voltage.  Summerfield and Lyon [26] 
showed that bit-serial dedicated signal processors built 
with standard cell automatic place and route tools can be 
much more locally connected, and hence more area and 
energy efficient, than typical bit-parallel designs. 

When higher levels of parallelism are difficult to use, 
as in general-purpose von Neuman machines, parallelism 
at the bit level is essential to achieving high performance.  
Because of this fact, bit-parallel techniques have come to 
dominate the computing industry, including computer 
engineering education.  Most architecture examples in the 
literature start from an implicit assumption of bit-level 
parallelism, but could in most cases be adapted to bit-serial 
approaches. 

3.2.  Programmable, Configurable, etc. 
Programmability is the key to the cost effectiveness 

and proliferation of microprocessors, but comes at a high 
energy cost relative to more specialized or dedicated 
architectures.  In portable products that process speech and 
other signals, some flexibility and re-programmability may 
still be valuable, but power should take on a much larger 
weight in the cost function.  An attractive intermediate 
between dedicated fixed-function architectures and 
programmable fetch-execute architectures is the family of 
“configurable” architectures.   

The configurable bit-serial architecture of Wawrzynek 
and Mead [23, 24, 25], mentioned above, implemented a 
variety of music synthesis algorithms about three orders of 
magnitude faster than a programmable microprocessor of 
similar technology, with much better energy efficiency.   

Yeung and Rabaey’s configurable “nanoprocessor” 
based architecture [27] has been benchmarked at about a 
billion operations per second per chip, with 64 
nanoprocessors per chip, in a variety of signal processing 
domains including speech recognition.  Like Wawrzynek 
and Mead’s, this architecture uses static scheduling of a 
signal flow graph to attain an effective compromise 
between generality and efficiency.  But because each 
nanoprocessor includes a small control store, it is even 
more flexible. 

Dedicated hardware for predetermined regular 
algorithms is the most efficient approach when it is 
applicable.  Systolic arrays represent a maximally parallel 
approach to dedicated hardware for large signal processing 
problems, and are a natural candidate for low-voltage 
operation.  Good reviews of systolic and array techniques 
are given by Rao and Kailath [28] and by Kung [29]. 

An example of the design of a VLSI digital audio 
equalizer is given by Slump et al. [30].  Two VLSI designs 
were completed and compared.  Both are essentially 
dedicated chips, but with internal control programmability.  
The first try, based on a single multiplier, turned out to be 
inefficient due to the difficulty of controlling it in a way 
that would take advantage of all the regularities and 
efficiencies known at the algorithm level.  The second 
version, using four smaller multipliers on one chip, did the 
job with less than half the silicon and at a lower clock rate, 
due largely to more flexible programming.  The details are 
complex enough that we do not try to draw a simple 
conclusion, except to note that more multipliers does not 
necessarily mean higher cost.  Architectural exploration is 
still needed to arrive at good designs. 

3.3.  RISC, VLIW, SIMD, MIMD, etc. 
Within the realm of programmable computing 

machines, parallelism options abound.  Multi-processor 
machines with single or multiple instruction streams 
(SIMD or MIMD) have been widely explored.  SIMD 
machines have reduced control overhead, but MIMD 
machines are more general.  Within single-processor 
machines, multiple function units may be organized using 
very-long-instruction-word (VLIW) or superscalar 
techniques.  VLIW is more efficient, given a good 
compiler, but superscalar is compatible with pre-existing 
instruction-set architectures, so is a more popular 
technique—for example, the Alpha is a dual-issue 
machine, or superscalar up to two instructions per cycle.  
Explicit vector instructions are another possibility, either 
controlling a vector pipeline or a SIMD vector datapath. 

All of these techniques have traditionally been 
explored for their speed potential.  But because efficient 
use of parallelism allows a given throughput at a lower 
clock rate and therefore a lower supply voltage, the same 
techniques are promising for power reduction.  The most 
effective alternative for sufficiently regular problem 
classes, as found in speech signal processing, will be those 
that reduce control complexity and overhead, such as 
explicitly vector oriented alternatives. 

4.  PHYSICAL LEVEL OPTIMIZATION 
Many choices are available in converting a logic 

design to circuits and layouts.  We review a few 
possibilities here in terms of their impact on speed, power, 
and area costs. 



 

4.1.  The Speed/Power Penalty 
Circuits optimized for speed use much more power 

than more moderate designs, when measured at a fixed 
clock rate and supply voltage where both will operate 
correctly.  Under such conditions, the more moderate 
design is preferred.  But the dominant “Hot Chips” 
approach optimizes for speed, ignoring other system cost 
factors.  In this  subsection, we discuss several physical-
level choices, and how optimizing them for speed increases 
power consumption and system cost. 

Transistor sizing is a key optimization tool.  For very 
high speed designs, it is generally necessary to use large 
transistors, so that stray and wire capacitance is reduced 
relative to active gate capacitance.  But at the high-speed 
end of the range, a large increase in size, and thus total 
capacitance, is needed to get a modest speed improvement.  
That is, the energy of a computation increases much more 
rapidly than the speed as transistors are made larger, with 
diminishing returns at higher speed.  Larger transistors also 
lead to larger cell layouts and longer interconnect wires, to 
compound the problem.  Tools are available for optimizing 
transistor sizes for speed, but usually not for other criteria.   

Semi-custom ASIC designs based on gate arrays or 
standard cells are particularly susceptible to the problem of 
excessive capacitance, both because transistors are 
generously oversized for speed and because wire routing 
capacitance is often far from optimal.  Good gate array and 
standard cell families optimized for energy efficiency 
would be quite useful.  Dedicating extra wiring channel 
space and feedthrough options could help reduce long 
wires, and thereby trade increased area for improved 
efficiency and speed.  Using smaller transistors and better 
optimized macrocells could recoup the area cost while 
further improving the energy efficiency at the cost of 
speed. 

In optimizing for speed, it is important to minimize 
clock skew.  Clock gating logic that would be useful for 
reducing activity in unused portions of a circuit could 
potentially save lots of power, but would increase clock 
skew and therefore adversely impact speed.  In the Alpha 
chip, since speed was paramount, it was decided to drive 
the clock signal ungated to almost everywhere that it was 
needed, irrespective of the energy wasted.   

Some circuit forms that are designed for high speed, 
such as “true single phase clock” (TSPC) dynamic logic 
[31, 32], require fast clock transitions to operate correctly.  
Therefore, large clock driver transistors are needed, and a 
large capacitive load is presented to the clock pre-driver 
stage.  Almost half the power consumed by the Alpha is in 
clock distribution, and since it uses TSPC and is optimized 
for speed, almost half of that in the pre-drivers. 

The combination of non-gated clocks and the TSPC 
logic form has allowed the Alpha to run at 200 MHz and 

claim the “Hot Chip” prize of its day, but at a tremendous 
cost in energy efficiency.  The packaging, cooling, and 
high-speed interconnect issues in any product that uses the 
Alpha near its rated speed will dominate the system cost.  
Products that use the Alpha well below its rated speed, to 
save cost, will still suffer a substantial penalty from the 
fact that the chip was optimized for speed, even if they run 
at a reduced voltage. 

In general, an improvement in circuit speed can be 
converted to an improvement in power by reducing the 
supply voltage to bring the speed back down.  However, as 
argued above without proof, this speed-optimization 
approach still results in a design way off the optimum for 
other more realistic cost functions. 

4.2.  The Area/Power Symbiosis 
In many cases, optimizing a circuit for area, rather 

than for speed, will lead to reduced computation energy 
with only a modest speed penalty.  Smaller transistors lead 
to smaller cells and shorter wires, for less total capacitance, 
as mentioned above.  Circuit choices that minimize the 
number of transistors may also reduce the effective 
capacitance being switched. 

A popular technique in nMOS for saving transistors 
and area is the use of pass-transistor logic [8].  Simple 
single-ended n-type pass-transistor logic has not been used 
much in CMOS because the typical CMOS inverter 
characteristic is not compatible with the reduced logic-high 
level at the output of a pass transistor:  it is difficult to 
achieve a low logic threshold and a low DC current.  An 
“Ultra Low Power” technique proposed by Lowy and 
Tiemann [16] solves this problem by a simple increase in 
the magnitude of p-type thresholds (and optionally also a 
reduction in n-type thresholds), thereby achieving an 
excellent combination of the advantages of nMOS and 
CMOS.  Their technique is particularly useful when the 
circuit must operate at conventional supply voltages and be 
compatible with conventional CMOS circuits.  It is unclear 
whether it works well or has compelling advantages at very 
low supply voltages. 

Another pass-transistor logic form termed 
“complementary pass-transistor logic” (CPL) has been 
described by Yano et al. [33].  They used  cross-coupled 
pullups to restore logic levels after complementary pass-
transistor paths, rather than modifying inverter thresholds, 
so more transistors are needed than in simple pass-
transistor logic.  According to Brodersen et al. [11], this 
circuit form, if used with reduced n-type transistor 
thresholds, is a full order of magnitude more energy 
efficient, in an adder application, than differential cascode 
voltage switch logic (DCVSL), with other logic forms 
studied falling in between (Lowy and Tiemann’s new logic 
form was not included, but may be even better). 



 

Another dual-rail version of pass-transistor logic, 
termed complementary set-reset logic (CSRL), has been 
proposed by Wawrzynek and Mead [23]; the pass-
transistor paths need not be complementary, but instead 
represent set and reset conditions for registers.  In many 
applications CSRL circuits are almost as compact as 
nMOS-like circuits, but simpler and more robust, requiring 
no process modifications.  CSRL is not known for its high 
speed, but Mead’s group and others use this versatile form 
extensively in conjunction with micropower analog 
designs [34].   

In some pass-transistor circuit forms, pass transistors 
may be used to implement dynamic storage.  In that case, 
as with any dynamic logic form, leakage will determine a 
lower bound on clock speed and hence on power, unless 
other methods are employed to “staticize” the design.  In 
CSRL, shift registers are inherently fully static, but 
dynamic storage is used in registers that neither set nor 
reset. 

5.  “MICROPOWER” TECHNIQUES 
Reducing power consumption by more than a few 

orders of magnitude will require more extensive changes in 
our thinking.  We briefly comment on both digital and 
analog “micropower” approaches. 

5.1.  Low Switching Energy 
The analyses of Burr and Peterson [35] show that 3-

dimensional MCM packaging of high-performance signal 
processing systems will require operation near the 
switching energy optimum, with transistor threshold 
voltages aggressively reduced into the 100–200 mV range, 
due to power and cooling costs.  This approach currently 
appears radical, but it is well motivated by technology 
trends and projected needs in real applications.  More 
moderate threshold reductions will work well with most of 
the other power-saving methods discussed here. 

In a new paper, Younis and Knight [36] show how to 
implement “Charge Recovery Logic” in CMOS to recover 
an increasing fraction of switching energy at decreasing 
clock rates.  This approach appears even more radical, but 
looks like a good way to achieve a flexible speed-power 
tradeoff, with power porportional to speed squared, 
without reducing the power supply voltage. 

5.2.  Massive Analog Parallelism  
The massively parallel “neural” micropower analog 

signal processing approach of Mead [37] has been applied 
to speech signal processing by Lyon and Mead and their 
colleagues [38, 39, 40, 41, 42].  Compared to the custom 
digital bit-serial approach of Summerfield and Lyon [26], 
the analog approach uses about an order of magnitude less 
silicon area and several orders of magnitude less power, 
but delivers much less precision. 

Mead and Faggin [2, 43] have argued that for low-
precision sensory front ends, where data variability and 
noise are inherently large compared to circuit component 
variability and noise, analog approaches show a significant 
advantage. 

In terms of silicon area for state storage, the crossover 
between analog and digital approaches can be estimated 
based on the number of bits of precision needed.  For some 
number of bits, N, the area of N digital memory cells will 
roughly match the area of an analog state storage capacitor 
and related circuits big enough for N bits of precision.  We 
estimate that N is around 8 bits today.  The additional local 
circuitry and power needed to process the stored state will 
almost always favor analog, since digital representations 
require lots of switching of lots of bits, while micropower 
analog approaches only incrementally change stored state 
voltages.  Analog approaches may be preferred in terms of 
power even up to 12 or more bits of precision. 

Analog techniques that use high-performance 
operational amplifiers are not as energy efficient as the 
micropower techniques, but may sometimes still be 
competitive with digital approaches. 

6.  LOW-POWER CHALLENGES 
Implementing the ideas presented in this tutorial 

presents the chip designer and system designer with a 
number of challenges, some of which will best be met by 
the consensus of the industry through new standards and 
conventions.   

Power supply voltage is a tool of great leverage for 
power reduction, but is not something that is easy to 
change continuously, or separately on different 
subsystems.  Particularly in battery operated products, the 
power supply voltage must be planned to meet voltages 
attainable from one or several electrochemical cells, of a 
type selected for a variety of complex reasons.  If the 
product can be operated without a voltage regulator, there 
will be greater savings, but then a more variable supply 
voltage must be tolerated, possibly along with a variable 
clock speed.  If multiple chips are needed, the supply 
voltage must be selected to be within the intersection of 
their operating voltage regions—nearly impossible with 
today's chips if you want to operate at an efficient low 
voltage—or parts of the system need to operate at different 
voltages.  If part of the system is operated at a lower 
voltage by dropping the supply through a dissipative series 
regulator, then the factor of V2  savings that was expected 
at the chip level will not be realized at the system level—
only one factor of V  will apply. 

Specialization is another powerful tool for power and 
silicon area savings.  A general-purpose von Neuman 
machine has a computational overhead of several orders of 
magnitude over a more specialized or dedicated signal 
processing architecture, while a programmable DSP chip 



 

falls somewhere between.  But specialization can be costly 
by limiting the capabilities of a system, or by requiring 
additional design time.  Efficient configurable or 
programmable architectures with a reasonable degree of 
specialization for signal processing applications are 
needed, but there is not yet a consensus as to which 
architectures to pursue beyond the single-chip DSP.  
Specializations that rely on parallelism with low control 
overhead, as in SIMD signal processors, offer a 
combination of advantages. 

Analog micro-power techniques are tremendously 
power efficient relative to computing with digital 
representations of signals, but the kinds of accuracy, 
repeatability, and testability that we have come to expect 
from digital approaches are difficult or impossible to 
attain.  This does not mean we are pessimistic on the 
outlook for massively parallel analog subsystems.  Rather, 
we need to solve some problems and identify appropriate 
applications, in order to find good commercial success 
possibilities such as the one Synaptics found for optical 
character reading.  Faggin and Mead [43] discuss this 
challenge. 

Dynamically controlling the power-speed tradeoff is 
another important challenge.  Making an existing portable 
computer architecture smart enough to judge the user’s 
priorities may be quite difficult.  Giving the user control 
over the tradeoff may be easier.  Just as users of videotape 
have accepted the job of choosing 2-hour, 4-hour, or 6-
hour recording mode, the user of a portable product could 
choose 2-hour, 4-hour, or 6-hour mode.  A user stuck on an 
airplane would appreciate the option.  If the product is a 
voice recorder, the tradeoff may influence sound quality; 
for other applications, it may influence responsiveness or 
other factors.  The user will learn to make the tradeoff. 

Can an existing chip spec'd at 200 MHz at 3.3 Volts 
and 30 Watts be operated an order of magnitude slower 
with two orders of magnitude power reduction, as expected 
around the Et  optimum?  Such scaling appears to be 
realized in Philips HLL CMOS [14].  Will the Alpha run at 
20 MHz with a 1.1 Volt power supply?  We suspect not.  
Typically somewhere in a chip will be unusual circuits 
with an extra threshold drop, which will kill performance 
rapidly as supply voltage is reduced.  Chip designers need 
to learn that such circuits, which are motivated by 
optimizing performance at a particular supply voltage, take 
away a powerful power saving tool from the system 
designer. 

7.  CONCLUSIONS 
There are a number of techniques available for 

reducing power consumption and system cost in speech 
signal processing products, and in other computing 
systems, as demanded especially by high-performance 
portable applications.  Reducing the power supply voltage 

is the most important technique available for reducing the 
switching energy of logic functions.  Using smaller 
transistors also reduces switching energy.  Both of these 
techniques result in slower operation, so performance may 
need to be made up by parallelism.  For parallelism to be 
effective, it needs to computationally efficient and power 
efficient, but also flexible enough for the range of tasks 
that it may be employed to implement.  The extra silicon 
usage of this “low and slow” approach [44] will be a small 
price to pay for system-level savings. 

The key impediment to taking advantage of cost-
saving and power-saving techniques is the difficulty in 
changing to a new way of thinking about performance 
tradeoffs as the economics and technology of 
microelectronics continue to evolve.  System designers and 
chip designers need to work together to accelerate 
progress. 

In summary, we offer the following list of top ten [45] 
standard ways to waste power and increase system 
cost:   
10. Do everything with a single central 

programmable processor, running fast enough for 
the worst-case computational demand. 

 9. When the processor is not needed to do real work, 
keep it running fast idle cycles. 

 8. Run the clock as fast as the chips allow, even 
when the application doesn’t demand it. 

 7. Make all memory references across a central 
high-speed heavily-loaded system bus. 

 6. Optimize circuits for speed, using low fanouts, 
large transistors, and lots of pipelining. 

 5. Don’t tolerate the additional clock skew of gated 
clocks to control which processing units are in 
use. 

 4. Use register circuits that require fast clock edges 
to operate correctly. 

 3. Use standard power supply voltages, regulated 
from a higher battery voltage. 

 2. Use digital signal representations wherever 
possible. 

And finally, the number one way that you as a custom 
chip designer can waste power and increase cost in a 
portable speech processor: 
 1. To avoid being outsmarted by a clever system 

designer, make sure your chip won’t operate 
correctly at a low voltage or a low clock rate. 
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