
CICC ‘93 Preprint (IEEE Custom Integrated Circuits Conference, San Diego, May 9–12)
comments to Lyon@Apple.com or (408) 974-1569

COST, POWER, AND PARALLELISM
IN SPEECH SIGNAL PROCESSING

Richard F. Lyon

Apple Computer
One Infinite Loop

Cupertino, CA 95014

ABSTRACT

 The cost of speech signal processing and other
computationally intensive functions is increasingly
influenced by power consumption as products are made
smaller and more portable. That is, in portable products,
weight and battery life are bigger issues than silicon area
and total computational capability. A recent emphasis on
the power problem within the VLSI signal processing
community has led to an understanding of how parallelism
can significantly reduce the cost of a system by greatly
reducing clock speed, supply voltage, and power
consumption, even though at the expense of silicon area
and other measures of efficiency. Several different kinds
and degrees of parallelism, including massive analog
parallelism, should be considered in planning to reduce the
total cost of speech signal processors. In this tutorial
paper, recent and older ideas are reviewed with respect to
their potential applicability to modern products, as well as
with respect to their difficulties.

1. INTRODUCTION AND MOTIVATION
Speech processing and other signal processing systems

have enough regularity and inherent parallelism that they
are amenable to a wide range of optimization techniques.
The VLSI academic and industrial communities have
traditionally focussed much more emphasis on
optimization of silicon area and clock speed than of power
consumption, though with portable products becoming
popular this trend is changing quickly. Analytical
optimization techniques sometimes lead to general rules of
thumb; for example, designers know to break up amplifiers
and drivers into stages with gains not much above e to
optimize delay [1]. But when the rules of thumb come
from the optimization of a single variable, they will be at
odds with the optimization of a more relevant joint cost
function. Since system-level cost functions have been
difficult to define at the chip design stage, and since good

joint optimization tools have been difficult to get and to
use, chip designers may still be applying rules of thumb
that lead to very power-inefficient, and hence costly,
product designs.

Historically, we have seen how applying huge
numbers of transistors to a problem can reduce the cost of
a system (as in the use of a DSP chip instead of a few
inductors and capacitors to implement a filter). In the age
of portable products, we should think in terms of applying
huge numbers of transistors to reduce the size and weight
of the battery. The examples surveyed in this tutorial
support the idea of using parallelism of slow processing
units as a power-saving alternative to the single fast central
processor that characterizes many of today's desktop and
portable products.

1.1. Power as a Primary Cost Factor
In today's desktop computers, the silicon chips and

associated components tend to cost more than the power
supply and cooling systems. While this may also be true in
portable computing products, the weight and limited
operating time of the portable power source implies
another kind of cost to the user. The option of increasing
the energy density by using more exotic batteries is
available, but at a very high cost. In new generation RISC-
based desktop systems, getting rid of the heat is an
increasingly costly problem. Overall, it seems that
electrical energy is very cheap, but storing and transporting
it, and getting rid of its waste heat, are increasingly
expensive in more compact and higher-performance
products. Mead has argued that computer system cost has
stayed proportional to power consumption over many
generations of machines, and that we should expect this
trend to continue [2].

In spite of this situation, we do not have good
institutionalized ways of estimating and trading off the true
costs associated with the power consumption of our
computational subsystems. In this tutorial, we emphasize
power as the primary cost factor that needs more explicit

consideration at all levels of design, in hopes of raising the
level of attention paid to power by chip and product
designers.

To make things worse, other kinds of hard-to-evalulate
costs are often involved in system optimization. For
example, Narkiewicz and Burleson [3] present techniques
that “allow tradeoffs between VLSI costs, performance and
precision,” while Orailoglu and Karri [4] “systematically
explore the three-dimensional design space spanned by
cost, performance, and fault-tolerance constraints.”
Apparently performance, precision, and fault-tolerance are
important dimensions that, like power, haven’t yet been
integrated into “system cost functions.”

1.2. Portable Speech Processors
Portable sound and speech products tend to have

severe real-time computational requirements relative to
other portable products, and hence a bigger problem with
battery weight and running time. We need to develop a
bag of tricks to attack this general problem at all levels.

An important property of speech processors is that
they have a bursty load. Voice coders, recognizers,
synthesizers, recorders, etc. only need to process speech
when speech is present. An important source of power
efficiency in such systems is the ability to shut down or
slow down parts of the system when their capabilities are
not needed. A less obvious power saving technique is to
move some of the work from the fast real-time mode into a
slower and more efficient background mode, for example
in a voice-mail compressor. In section 2 we explain how a
slow mode not only reduces the power level, but can also
reduce the total energy consumption.

1.3. “Are DSP Chips Obsolete?”
In a recent paper, Stewart, Payne, and Levergood [5]

posed the question of what a specialized DSP chip is good
for in the age of fast RISC chips. Using the DEC Alpha
architecture [6] as an example, they argue that it is
generally preferred to let a fast RISC chip do the kinds of
computational jobs, such as speech processing, that have
been largely relegated to DSP chips during the last decade.
Unfortunately, they totally ignore power as a cost factor,
and propose a solution that is about an order of magnitude
more energy hungry than the DSP alternative. We discuss
how optimizing a chip for speed leads to its inefficient use
of energy, again using the DEC Alpha RISC chip as an
example.

1.4. Previous Surveys
There are several previous excellent surveys of power-

saving techniques and the size-cost-speed-voltage-power
trends and limits of CMOS technology (mostly from an
academic perspective). An early study by Swanson and
Meindl (Stanford) [7] explores CMOS logic structures at
very low supply voltages. Mead and Conway (Caltech and

Xerox) [8] provide in-depth chapters on the “Physics of
Computational Systems”, including technology scaling and
energetics of very low voltage CMOS, as well as an
introduction to the kinds of “Highly Concurrent Systems”
architectures that can take advantage of low-speed low-
power operation (with contributions from Kung and
Leiserson of CMU and Browning and Rem of Caltech).
Vittoz (Swiss CSEM and EPFL) describes “Micropower”
techniques for portable electronic devices [9]. Mead
(Caltech) [2] emphasizes power costs and the power
efficiency of special-purpose and analog signal processing
implementations in “Neuromorphic” systems. Burr,
Williamson, and Peterson (Stanford) [10] survey low-
power issues in modern high-performance signal
processing systems, emphasizing current projects at
Stanford. Brodersen, Chandrakasan, and Sheng (Berkeley)
[11] provide an excellent tutorial with specific examples of
choices at many levels that can improve power efficiency
in signal processors.

In the present tutorial, rather than introducing new
ideas, we attempt to assemble ideas to support an attitude
adjustment of design engineers, emphasizing the
conclusions of Mead and Conway [8] over a decade ago,
that “In real systems, the cost of power, cooling, and
electrical bypassing often exceeds the cost of the chips
themselves. Hence any discussion of the cost of
computation must include the energy cost of individual
steps of the computation process.” and “Perhaps the
greatest challenge that VLSI presents to computer science
is that of developing a theory of computation that
accommodates a more general model of the costs involved
in computing.”

2. POWER CONSUMPTION BASICS
Power consumption in modern CMOS circuits is

usually dominated by dynamic power related to the
charging and discharging of circuit nodes between the two
power supply voltage levels that represent logic 1 and logic
0. Dynamic power can be expressed as:

P = fCV
2

where f is the clock frequency, C is the effective total
capacitance being switched at the rate of one transition per
clock cycle, and V is the supply voltage.

The effective total capacitance is computed as a
weighted sum of all the node capacitances in the circuit,
with each node’s weight equal to its number of logic
transitions per clock cycle, averaged over the conditions of
interest. Clock nodes have two transitions per cycle, so
they count double, while static logic nodes may average
one-half transition per cycle or less; precharged logic
nodes are typically somewhere in between.

2.1. Reducing Power
It might almost go without saying that power can be

reduced in three ways:
 • Reduce Frequency
 • Reduce Capacitance
 • Reduce Voltage

Importantly, the voltage factor applies twice, so any
reduction in voltage is worth twice as much power savings
as a proportionate reduction in frequency or capacitance.
But the supply voltage may also be the most difficult
parameter for the designer to change freely, due to system
and compatibility constraints. Typically reducing the
supply voltage will also require reducing the clock
frequency, so other changes will be needed to maintain
performance.

Reductions in effective switched capacitance can
come from two main sources: physical-level and circuit-
level optimizations that reduce node capacitance per logic
gate, and logical/architectural reorganizations that reduce
the number of nodes or gates being switched. Avoiding
clock and data transitions in portions of the processor that
are not needed for a particular part of the computation is
one technique that pays off well. Making low-level
“sizing” optimization criteria favor power rather than
speed will result in smaller transistors, smaller cell layouts,
and shorter wires, all contributing to lower capacitance.

Reductions in clock frequency are generally
acceptable only if there is some other change that allows
the system computational requirements to be met. For
example, the average clock frequency can be reduced if the
clock frequency is made variable and the computational
requirements are variable. Or the clock frequency can be
cut by a factor of N if N copies of the processor are used
and can efficiently share the computational load. In this
case, the silicon area and capacitance increase by a factor
of N, but the lower clock rate will allow a lower supply
voltage and a great power savings. This kind of trading of
frequency and voltage against area and parallelism is a
large under-exploited source of power savings.

CMOS circuits also dissipate power during switching
due to the fact that the transistor charging a node doesn't
quite turn off before the other transistor tries to discharge
the node. This “crossover” or “short-circuit” power is
again proportional to the effective switching frequency and
to a “strength times slowness” factor that scales pretty
much like the capacitance; but this power is also a very
expansive function of supply voltage (between quadratic
and exponential). If the supply voltage is reduced to
around twice the typical transistor threshold, the crossover
power involves only subthreshold conduction, and is
largely negligible (as long as threshold magnitudes are
large compared to kT/q); but for 3-V and 5-V chips it may
be a significant power as well as a significant contributor

to power supply noise spikes. DC power is also significant
if threshold voltages are reduced to the point where the
turned-off transistor has a substantial leakage. Burr and
Peterson [12] analyze the contribution of crossover power
and DC power at very low threshold and supply voltages,
where they are important considerations in establishing
limits to ultra low power operation.

2.2. Circuit Speed versus Voltage
Operating a system at a supply voltage higher than the

clock frequency requires is a big waste of power. The
system designer should think about scaling supply voltage
and system clock frequency together for best efficiency.
Using self-timed circuits or voltage-dependent clock
oscillators, it is possible to make the system speed adapt to
conditions such as dropping battery voltage, changing
temperature, etc. For example, the technique of Von
Kaenel et al. [13] can be used to drop the supply voltage to
match the logic speed, or can be turned around to adjust
the logic speed to match the supply voltage.

The designer needs to know what to expect in the
speed versus voltage tradeoff even when the system
handles it automatically. The expected scaling between
voltage and speed depends on what voltage range is
considered; figure 1 characterizes some possibilities.

min Vt

min Et

0

f

1 2 3 4

Vmin E Radically Cool

2 V

1 V

Hot Chips

Conservative

Liberal

3 V

4 V

Figure 1. A crude characterization of power supply
voltage ranges available to the chip and system designer,
and an approximate speed-voltage curve (solid) shown
with a linear approximation (dashed).

The speed of logic circuits has traditionally been
approximated as linear with supply voltage, as in the
dashed line in figure 1. This “rule of thumb” was
reasonable for supply voltages large compared to a
threshold voltage, in older technologies that did not show
short-channel effects and velocity saturation within the
typical range of supply voltages. According to this
approximation, each 1% increase in speed costs a 1%
increase in voltage, a 2% increase in switching energy, and
a 3% increase in power.

Many designers have internalized a second-order
correction derived from the standard quadratic MOS
transistor model—speed varies as supply voltage minus
threshold, and hence is more than proportional to supply
voltage:

! f

f
>
!V

V
 "old scaling"

This relation tells designers that reducing the supply
voltage has a relatively large speed penalty—a rule that is
no longer true at typical standard voltages.

A relevant cost function that can be optimized is the
voltage-time product Vt , or equivalently Et

2 , where
switching energy E is proportional to V2 , and t is the
logic delay, inversely proportion to f . According to “old
scaling”, this cost function is optimized by letting V
increase toward infinity. In modern fine-line processes,
velocity saturation is a dominant effect in the 3-V to 5-V
region, so circuit speed actually varies less than linearly
with supply voltage:

! f

f
<
!V

V
 "new scaling"

The actual optimum of the Et2 criterion will occur at the
voltage that defines the boundary between the old scaling,
where velocity saturation was negligible, and the new
scaling, where it dominates the threshold effect. This
critical voltage is decreasing as the technology scales, and
is already below 3 Volts, according to the speed derating
curve of the Philips HLL (High-speed Low-power Low-
voltage) CMOS logic family [14]. Many designers have
not yet internalized this new reality, so they continue to
pay more than a 3% power increase for each 1% speed
increase by keeping the supply voltage around 3 to 5 Volts.

Other sensible criteria that may be analytically
optimized, as reviewed by Burr and Peterson [12], include
the energy-time product Et and the switching energy E .
Optimizing E puts zero weight on speed, which is
probably not useful in current products, but is useful in
deriving lower bounds to sensible supply voltages. At the
optimum, where supply voltage is approximately equal to
threshold voltage, power will be proportional to speed, but
only very low speeds will be achievable. As the cost of
transistors continues to fall, making up for the speed loss
with increased parallelism will push efficient designs
toward this limit.

Optimizing Et means that each 1% increase in speed
is worth a 1% increase in switching energy and a 2%
increase in power. Burr and Peterson [12] show that this
criterion is optimized when the supply voltage is equal to
three times the threshold voltage, ignoring velocity
saturation and subthreshold effects. If velocity saturation
is already significant at this voltage, the actual optimum
voltage will be even lower.

If clock frequency varies linearly with voltage, power
varies as the cube. In modern technologies, the power will
be less than cubic at traditional high voltages, and more
than cubic at sufficiently low voltages. But the large
power effect at low voltages comes with a corresponding
clock speed penalty. The switching energy or energy per
clock cycle is still proportional to V2 . Therefore, if a
system can be built with a slow low-voltage “background”
mode and a faster “foreground” or “real-time” mode,
computations that can be deferred to the slower mode can
be done much more energy efficiently.

3. DIGITAL PARALLELISM OPTIONS
At the recent IEEE Workshop on VLSI Signal

Processing, there was considerable excitement around the
topic of low-power techniques. In addition to the tutorial
of Brodersen et al. [11] mentioned above, there were
several contributed papers on low-power techniques [15,
16], as well as a number of papers on architecture
alternatives that provide a range of examples that the
techniques could be applied to or evaluated on. For this
tutorial, I draw digital parallelism examples mainly from
that workshop and its predecessors, and from my own
work. Varying styles and degrees of parallelism
distinguish the architectural options.

One useful tool for coarse architecture-level
evaluation of alternatives is the “power factor
approximation” (PFA) method of Chau and Powell [17,
18], which provides a method of estimating the energy cost
of a system based on the number and size of
multiplication, storage, and communication operations, etc.
Berkelaar and Theeuwen [19] provide a tool that directly
manipulates designs to explore the area-power-delay space.
In both of these approaches, however, since they do not
consider supply voltage among the parameters under the
control of the designer, some of their conclusions do not
apply when supply voltage is jointly optimized with
architecture. Alternatively, Chandrakasan et al. [15]
specifically consider architecture and algorithm
transformations jointly with voltage optimization to
minimize power at a specified throughput, and find that the
optimum supply voltage on real-world examples is often
about 1.5 Volts, somewhat below the Et optimum.

3.1. Bit-Serial vs. Bit-Parallel
An obvious level of parallelism familiar in most

digital computing machines is bit-level parallelism.
Microprocessor chips have been advancing exponentially
in this dimension, though at a relatively slow rate (4-bit to
64-bit machines in 20 years is a doubling every 5 years,
which is quite slow compared to the rate of improvement
of other metrics in this field). There is little reason to
expect or want an increase in the size of arithmetic
operands beyond 32, 64, or 80 bits, depending on the

application, and therefore little opportunity for increased
parallelism of this sort.

At the other end of the spectrum, bit-serial methods
are attractive because they reduce interconnect complexity
and make it easier to employ other levels of parallelism.
Lyon [20, 21, 22] has shown both dedicated (functionally
parallel) and programmable (SIMD) bit-serial architectures
for signal processing, and Wawrzynek and Mead have
shown a configurable architecture [23, 24, 25]. The
shallow logic depths and simple interconnect topologies of
these designs were exploited for speed and area efficiency,
but can also contribute to energy efficiency in
configurations that meet the throughput needs at a lower
clock rate and supply voltage. Summerfield and Lyon [26]
showed that bit-serial dedicated signal processors built
with standard cell automatic place and route tools can be
much more locally connected, and hence more area and
energy efficient, than typical bit-parallel designs.

When higher levels of parallelism are difficult to use,
as in general-purpose von Neuman machines, parallelism
at the bit level is essential to achieving high performance.
Because of this fact, bit-parallel techniques have come to
dominate the computing industry, including computer
engineering education. Most architecture examples in the
literature start from an implicit assumption of bit-level
parallelism, but could in most cases be adapted to bit-serial
approaches.

3.2. Programmable, Configurable, etc.
Programmability is the key to the cost effectiveness

and proliferation of microprocessors, but comes at a high
energy cost relative to more specialized or dedicated
architectures. In portable products that process speech and
other signals, some flexibility and re-programmability may
still be valuable, but power should take on a much larger
weight in the cost function. An attractive intermediate
between dedicated fixed-function architectures and
programmable fetch-execute architectures is the family of
“configurable” architectures.

The configurable bit-serial architecture of Wawrzynek
and Mead [23, 24, 25], mentioned above, implemented a
variety of music synthesis algorithms about three orders of
magnitude faster than a programmable microprocessor of
similar technology, with much better energy efficiency.

Yeung and Rabaey’s configurable “nanoprocessor”
based architecture [27] has been benchmarked at about a
billion operations per second per chip, with 64
nanoprocessors per chip, in a variety of signal processing
domains including speech recognition. Like Wawrzynek
and Mead’s, this architecture uses static scheduling of a
signal flow graph to attain an effective compromise
between generality and efficiency. But because each
nanoprocessor includes a small control store, it is even
more flexible.

Dedicated hardware for predetermined regular
algorithms is the most efficient approach when it is
applicable. Systolic arrays represent a maximally parallel
approach to dedicated hardware for large signal processing
problems, and are a natural candidate for low-voltage
operation. Good reviews of systolic and array techniques
are given by Rao and Kailath [28] and by Kung [29].

An example of the design of a VLSI digital audio
equalizer is given by Slump et al. [30]. Two VLSI designs
were completed and compared. Both are essentially
dedicated chips, but with internal control programmability.
The first try, based on a single multiplier, turned out to be
inefficient due to the difficulty of controlling it in a way
that would take advantage of all the regularities and
efficiencies known at the algorithm level. The second
version, using four smaller multipliers on one chip, did the
job with less than half the silicon and at a lower clock rate,
due largely to more flexible programming. The details are
complex enough that we do not try to draw a simple
conclusion, except to note that more multipliers does not
necessarily mean higher cost. Architectural exploration is
still needed to arrive at good designs.

3.3. RISC, VLIW, SIMD, MIMD, etc.
Within the realm of programmable computing

machines, parallelism options abound. Multi-processor
machines with single or multiple instruction streams
(SIMD or MIMD) have been widely explored. SIMD
machines have reduced control overhead, but MIMD
machines are more general. Within single-processor
machines, multiple function units may be organized using
very-long-instruction-word (VLIW) or superscalar
techniques. VLIW is more efficient, given a good
compiler, but superscalar is compatible with pre-existing
instruction-set architectures, so is a more popular
technique—for example, the Alpha is a dual-issue
machine, or superscalar up to two instructions per cycle.
Explicit vector instructions are another possibility, either
controlling a vector pipeline or a SIMD vector datapath.

All of these techniques have traditionally been
explored for their speed potential. But because efficient
use of parallelism allows a given throughput at a lower
clock rate and therefore a lower supply voltage, the same
techniques are promising for power reduction. The most
effective alternative for sufficiently regular problem
classes, as found in speech signal processing, will be those
that reduce control complexity and overhead, such as
explicitly vector oriented alternatives.

4. PHYSICAL LEVEL OPTIMIZATION
Many choices are available in converting a logic

design to circuits and layouts. We review a few
possibilities here in terms of their impact on speed, power,
and area costs.

4.1. The Speed/Power Penalty
Circuits optimized for speed use much more power

than more moderate designs, when measured at a fixed
clock rate and supply voltage where both will operate
correctly. Under such conditions, the more moderate
design is preferred. But the dominant “Hot Chips”
approach optimizes for speed, ignoring other system cost
factors. In this subsection, we discuss several physical-
level choices, and how optimizing them for speed increases
power consumption and system cost.

Transistor sizing is a key optimization tool. For very
high speed designs, it is generally necessary to use large
transistors, so that stray and wire capacitance is reduced
relative to active gate capacitance. But at the high-speed
end of the range, a large increase in size, and thus total
capacitance, is needed to get a modest speed improvement.
That is, the energy of a computation increases much more
rapidly than the speed as transistors are made larger, with
diminishing returns at higher speed. Larger transistors also
lead to larger cell layouts and longer interconnect wires, to
compound the problem. Tools are available for optimizing
transistor sizes for speed, but usually not for other criteria.

Semi-custom ASIC designs based on gate arrays or
standard cells are particularly susceptible to the problem of
excessive capacitance, both because transistors are
generously oversized for speed and because wire routing
capacitance is often far from optimal. Good gate array and
standard cell families optimized for energy efficiency
would be quite useful. Dedicating extra wiring channel
space and feedthrough options could help reduce long
wires, and thereby trade increased area for improved
efficiency and speed. Using smaller transistors and better
optimized macrocells could recoup the area cost while
further improving the energy efficiency at the cost of
speed.

In optimizing for speed, it is important to minimize
clock skew. Clock gating logic that would be useful for
reducing activity in unused portions of a circuit could
potentially save lots of power, but would increase clock
skew and therefore adversely impact speed. In the Alpha
chip, since speed was paramount, it was decided to drive
the clock signal ungated to almost everywhere that it was
needed, irrespective of the energy wasted.

Some circuit forms that are designed for high speed,
such as “true single phase clock” (TSPC) dynamic logic
[31, 32], require fast clock transitions to operate correctly.
Therefore, large clock driver transistors are needed, and a
large capacitive load is presented to the clock pre-driver
stage. Almost half the power consumed by the Alpha is in
clock distribution, and since it uses TSPC and is optimized
for speed, almost half of that in the pre-drivers.

The combination of non-gated clocks and the TSPC
logic form has allowed the Alpha to run at 200 MHz and

claim the “Hot Chip” prize of its day, but at a tremendous
cost in energy efficiency. The packaging, cooling, and
high-speed interconnect issues in any product that uses the
Alpha near its rated speed will dominate the system cost.
Products that use the Alpha well below its rated speed, to
save cost, will still suffer a substantial penalty from the
fact that the chip was optimized for speed, even if they run
at a reduced voltage.

In general, an improvement in circuit speed can be
converted to an improvement in power by reducing the
supply voltage to bring the speed back down. However, as
argued above without proof, this speed-optimization
approach still results in a design way off the optimum for
other more realistic cost functions.

4.2. The Area/Power Symbiosis
In many cases, optimizing a circuit for area, rather

than for speed, will lead to reduced computation energy
with only a modest speed penalty. Smaller transistors lead
to smaller cells and shorter wires, for less total capacitance,
as mentioned above. Circuit choices that minimize the
number of transistors may also reduce the effective
capacitance being switched.

A popular technique in nMOS for saving transistors
and area is the use of pass-transistor logic [8]. Simple
single-ended n-type pass-transistor logic has not been used
much in CMOS because the typical CMOS inverter
characteristic is not compatible with the reduced logic-high
level at the output of a pass transistor: it is difficult to
achieve a low logic threshold and a low DC current. An
“Ultra Low Power” technique proposed by Lowy and
Tiemann [16] solves this problem by a simple increase in
the magnitude of p-type thresholds (and optionally also a
reduction in n-type thresholds), thereby achieving an
excellent combination of the advantages of nMOS and
CMOS. Their technique is particularly useful when the
circuit must operate at conventional supply voltages and be
compatible with conventional CMOS circuits. It is unclear
whether it works well or has compelling advantages at very
low supply voltages.

Another pass-transistor logic form termed
“complementary pass-transistor logic” (CPL) has been
described by Yano et al. [33]. They used cross-coupled
pullups to restore logic levels after complementary pass-
transistor paths, rather than modifying inverter thresholds,
so more transistors are needed than in simple pass-
transistor logic. According to Brodersen et al. [11], this
circuit form, if used with reduced n-type transistor
thresholds, is a full order of magnitude more energy
efficient, in an adder application, than differential cascode
voltage switch logic (DCVSL), with other logic forms
studied falling in between (Lowy and Tiemann’s new logic
form was not included, but may be even better).

Another dual-rail version of pass-transistor logic,
termed complementary set-reset logic (CSRL), has been
proposed by Wawrzynek and Mead [23]; the pass-
transistor paths need not be complementary, but instead
represent set and reset conditions for registers. In many
applications CSRL circuits are almost as compact as
nMOS-like circuits, but simpler and more robust, requiring
no process modifications. CSRL is not known for its high
speed, but Mead’s group and others use this versatile form
extensively in conjunction with micropower analog
designs [34].

In some pass-transistor circuit forms, pass transistors
may be used to implement dynamic storage. In that case,
as with any dynamic logic form, leakage will determine a
lower bound on clock speed and hence on power, unless
other methods are employed to “staticize” the design. In
CSRL, shift registers are inherently fully static, but
dynamic storage is used in registers that neither set nor
reset.

5. “MICROPOWER” TECHNIQUES
Reducing power consumption by more than a few

orders of magnitude will require more extensive changes in
our thinking. We briefly comment on both digital and
analog “micropower” approaches.

5.1. Low Switching Energy
The analyses of Burr and Peterson [35] show that 3-

dimensional MCM packaging of high-performance signal
processing systems will require operation near the
switching energy optimum, with transistor threshold
voltages aggressively reduced into the 100–200 mV range,
due to power and cooling costs. This approach currently
appears radical, but it is well motivated by technology
trends and projected needs in real applications. More
moderate threshold reductions will work well with most of
the other power-saving methods discussed here.

In a new paper, Younis and Knight [36] show how to
implement “Charge Recovery Logic” in CMOS to recover
an increasing fraction of switching energy at decreasing
clock rates. This approach appears even more radical, but
looks like a good way to achieve a flexible speed-power
tradeoff, with power porportional to speed squared,
without reducing the power supply voltage.

5.2. Massive Analog Parallelism
The massively parallel “neural” micropower analog

signal processing approach of Mead [37] has been applied
to speech signal processing by Lyon and Mead and their
colleagues [38, 39, 40, 41, 42]. Compared to the custom
digital bit-serial approach of Summerfield and Lyon [26],
the analog approach uses about an order of magnitude less
silicon area and several orders of magnitude less power,
but delivers much less precision.

Mead and Faggin [2, 43] have argued that for low-
precision sensory front ends, where data variability and
noise are inherently large compared to circuit component
variability and noise, analog approaches show a significant
advantage.

In terms of silicon area for state storage, the crossover
between analog and digital approaches can be estimated
based on the number of bits of precision needed. For some
number of bits, N, the area of N digital memory cells will
roughly match the area of an analog state storage capacitor
and related circuits big enough for N bits of precision. We
estimate that N is around 8 bits today. The additional local
circuitry and power needed to process the stored state will
almost always favor analog, since digital representations
require lots of switching of lots of bits, while micropower
analog approaches only incrementally change stored state
voltages. Analog approaches may be preferred in terms of
power even up to 12 or more bits of precision.

Analog techniques that use high-performance
operational amplifiers are not as energy efficient as the
micropower techniques, but may sometimes still be
competitive with digital approaches.

6. LOW-POWER CHALLENGES
Implementing the ideas presented in this tutorial

presents the chip designer and system designer with a
number of challenges, some of which will best be met by
the consensus of the industry through new standards and
conventions.

Power supply voltage is a tool of great leverage for
power reduction, but is not something that is easy to
change continuously, or separately on different
subsystems. Particularly in battery operated products, the
power supply voltage must be planned to meet voltages
attainable from one or several electrochemical cells, of a
type selected for a variety of complex reasons. If the
product can be operated without a voltage regulator, there
will be greater savings, but then a more variable supply
voltage must be tolerated, possibly along with a variable
clock speed. If multiple chips are needed, the supply
voltage must be selected to be within the intersection of
their operating voltage regions—nearly impossible with
today's chips if you want to operate at an efficient low
voltage—or parts of the system need to operate at different
voltages. If part of the system is operated at a lower
voltage by dropping the supply through a dissipative series
regulator, then the factor of V2 savings that was expected
at the chip level will not be realized at the system level—
only one factor of V will apply.

Specialization is another powerful tool for power and
silicon area savings. A general-purpose von Neuman
machine has a computational overhead of several orders of
magnitude over a more specialized or dedicated signal
processing architecture, while a programmable DSP chip

falls somewhere between. But specialization can be costly
by limiting the capabilities of a system, or by requiring
additional design time. Efficient configurable or
programmable architectures with a reasonable degree of
specialization for signal processing applications are
needed, but there is not yet a consensus as to which
architectures to pursue beyond the single-chip DSP.
Specializations that rely on parallelism with low control
overhead, as in SIMD signal processors, offer a
combination of advantages.

Analog micro-power techniques are tremendously
power efficient relative to computing with digital
representations of signals, but the kinds of accuracy,
repeatability, and testability that we have come to expect
from digital approaches are difficult or impossible to
attain. This does not mean we are pessimistic on the
outlook for massively parallel analog subsystems. Rather,
we need to solve some problems and identify appropriate
applications, in order to find good commercial success
possibilities such as the one Synaptics found for optical
character reading. Faggin and Mead [43] discuss this
challenge.

Dynamically controlling the power-speed tradeoff is
another important challenge. Making an existing portable
computer architecture smart enough to judge the user’s
priorities may be quite difficult. Giving the user control
over the tradeoff may be easier. Just as users of videotape
have accepted the job of choosing 2-hour, 4-hour, or 6-
hour recording mode, the user of a portable product could
choose 2-hour, 4-hour, or 6-hour mode. A user stuck on an
airplane would appreciate the option. If the product is a
voice recorder, the tradeoff may influence sound quality;
for other applications, it may influence responsiveness or
other factors. The user will learn to make the tradeoff.

Can an existing chip spec'd at 200 MHz at 3.3 Volts
and 30 Watts be operated an order of magnitude slower
with two orders of magnitude power reduction, as expected
around the Et optimum? Such scaling appears to be
realized in Philips HLL CMOS [14]. Will the Alpha run at
20 MHz with a 1.1 Volt power supply? We suspect not.
Typically somewhere in a chip will be unusual circuits
with an extra threshold drop, which will kill performance
rapidly as supply voltage is reduced. Chip designers need
to learn that such circuits, which are motivated by
optimizing performance at a particular supply voltage, take
away a powerful power saving tool from the system
designer.

7. CONCLUSIONS
There are a number of techniques available for

reducing power consumption and system cost in speech
signal processing products, and in other computing
systems, as demanded especially by high-performance
portable applications. Reducing the power supply voltage

is the most important technique available for reducing the
switching energy of logic functions. Using smaller
transistors also reduces switching energy. Both of these
techniques result in slower operation, so performance may
need to be made up by parallelism. For parallelism to be
effective, it needs to computationally efficient and power
efficient, but also flexible enough for the range of tasks
that it may be employed to implement. The extra silicon
usage of this “low and slow” approach [44] will be a small
price to pay for system-level savings.

The key impediment to taking advantage of cost-
saving and power-saving techniques is the difficulty in
changing to a new way of thinking about performance
tradeoffs as the economics and technology of
microelectronics continue to evolve. System designers and
chip designers need to work together to accelerate
progress.

In summary, we offer the following list of top ten [45]
standard ways to waste power and increase system
cost:
10. Do everything with a single central

programmable processor, running fast enough for
the worst-case computational demand.

 9. When the processor is not needed to do real work,
keep it running fast idle cycles.

 8. Run the clock as fast as the chips allow, even
when the application doesn’t demand it.

 7. Make all memory references across a central
high-speed heavily-loaded system bus.

 6. Optimize circuits for speed, using low fanouts,
large transistors, and lots of pipelining.

 5. Don’t tolerate the additional clock skew of gated
clocks to control which processing units are in
use.

 4. Use register circuits that require fast clock edges
to operate correctly.

 3. Use standard power supply voltages, regulated
from a higher battery voltage.

 2. Use digital signal representations wherever
possible.

And finally, the number one way that you as a custom
chip designer can waste power and increase cost in a
portable speech processor:
 1. To avoid being outsmarted by a clever system

designer, make sure your chip won’t operate
correctly at a low voltage or a low clock rate.

REFERENCES
[1] A. M. Mohsen and C. A. Mead, “Delay Time

Optimization for Driving and Sensing of Signals on
High-Capacitance Paths of VLSI Systems,” IEEE J.
Solid-State Circ. 14, pp. 462-470, 1979.

[2] C. Mead, “Neuromorphic Electronic Systems,” Proc.
IEEE 78, pp. 1629–1636, 1990.

[3] J. Narkiewicz and W. P. Burleson, “VLSI
Performance/Precision Tradeoffs of Approximate
Rank-Order Filters,” VLSI Signal Processing, V (K.
Yao, R. Jain, and W. Przytula, eds.) pp. 185–194,
IEEE 1992.

[4] A. Orailoglu and R. Karri “A Design Methodology
for the High-Level Synthesis of Fault-Tolerant
ASICs,” VLSI Signal Processing, V (K. Yao, R. Jain,
and W. Przytula, eds.) pp. 417–426, IEEE 1992.

[5] L. C. Stewart, A. C. Payne, and T. M. Levergood,
“Are DSP Chips Obsolete?,” Intl. Conf. on Signal
Processing Applications and Technology, pp. 178–
187, DSP Associates, Boston, 1992.

[6] D. W. Dobberpuhl et xxii al. “A 200-MHz 64-b Dual-
Issue CMOS Microprocessor,” IEEE J. Solid-State
Circ. 27 pp. 1555–1567, 1992.

[7] R. M. Swanson and J. D. Meindl, “Ion-Implanted
Complementary MOS Transistors in Low Voltage
Circuits,” IEEE J. Solid-State Circ. 7, pp. 146–153,
1972.

[8] C. Mead and L. A. Conway, Introduction to VLSI
Systems, Addison-Wesley, 1980.

[9] E. A. Vittoz, “Micropower Techniques,” in Design of
MOS VLSI Circuits for Telecommunications (Y.
Tsividis and P. Antognetti, eds.), Prentice-Hall, 1985.

[10] J. Burr, P. R. Williamson, and A. Peterson, “Low
Power Signal Processing Research at Stanford,” 3rd
NASA Symposium on VLSI Design, pp. 11.1.1–
11.1.12, Moscow, Idaho, Oct., 1991.

[11] R. Brodersen, A. Chandrakasan, and S. Sheng, “Low-
Power Signal Processing Systems,” VLSI Signal
Processing, V (K. Yao, R. Jain, and W. Przytula, eds.)
pp. 3–13, IEEE 1992.

[12] J. Burr and A. Peterson, “Ultra Low Power CMOS
Technology,” 3rd NASA Symposium on VLSI Design,
pp. 4.2.1–4.2.13, Moscow, Idaho, Oct., 1991.

[13] V. Von Kaenel, P. Macken, and M. G. R. Degrauwe,
“A Voltage Reduction Technique for Battery-
Operated Systems,” IEEE J. Solid-State Circ. 25 pp.
1136–1140, 1990.

[14] Philips Semiconductors, “Fast, low-power HLL &
LV-HCMOS logic families… …for systems with 1.2
V to 3.6 V supplies,” undated product literature.

[15] A. Chandrakasan, M. Potkonjak, J. Rabaey, and R.
Brodersen, “An Approach for Power Minimization
Using Transformations,” VLSI Signal Processing, V
(K. Yao, R. Jain, and W. Przytula, eds.) pp. 41–50,
IEEE 1992.

[16] M. Lowy and J. J. Tiemann, “Ultra-Low Power
Digital CMOS Circuits,” VLSI Signal Processing, V
(K. Yao, R. Jain, and W. Przytula, eds.) pp. 31–40,
IEEE 1992.

[17] S. R. Powell and P. M. Chau, “Estimating Power
Dissipation of VLSI Signal Processing Chips: The
PFA Technique,” VLSI Signal Processing, IV (H. S.
Moscovitz, K. Yao, and R. Jain, eds.), pp. 250–259,
IEEE 1990.

[18] S. R. Powell and P. M. Chau, “A Model for
Estimating Power Dissipation in a Class of DSP VLSI
Chips,” IEEE Trans. Circ. and Sys. 38 pp. 646–650,
1991.

[19] M. R. C. M. Berkelaar and J. F. M. Theeuwen, "Real
Area-Power-Delay Trade-Off in the Euclid Logic
Synthesis System," Custom Integrated Circuits
Conference, pp. 14.3.1–14.3.4, IEEE, 1990.

[20] R. F. Lyon, “A Bit-Serial VLSI Architectural
Methodology for Signal Processing,” in VLSI 81 Very
Large Scale Integration (J. P. Gray, ed.), Academic
Press, 1981.

[21] R. F. Lyon, “FILTERS: An Integrated Digital Filter
Subsystem” and “MSSP: A Bit-Serial Multiprocessor
for Signal Processing,” in VLSI Signal Processing: A
Bit-Serial Approach, P. B. Denyer and D. Renshaw,
Addison-Wesley, 1985.

[22] R. F. Lyon, “MSSP: A Bit-Serial Multiprocessor for
Signal Processing,” in VLSI Signal Processing (P.
Cappello et al., eds.), IEEE Press, 1984.

[23] J. Wawrzynek and C. Mead, “A New Discipline for
CMOS Design: An Architecture for Sound
Synthesis,” in Chapel Hill Conference on Very Large
Scale Integration, H. Fuchs, ed., Computer Science
Press, 1985.

[24] J. Wawrzynek and C. Mead, “A VLSI Architecture
for Sound Synthesis,” in VLSI Signal Processing: A
Bit-Serial Approach, P. B. Denyer and D. Renshaw,
Addison-Wesley, 1985.

[25] J. Wawrzynek and C. Mead, “A Reconfigurable
Concurrent VLSI Architecture for Sound Synthesis,”
VLSI Signal Processing, II (S. Y Kung, R. E. Owen,
and J. G. Nash, eds.), pp. 385–396, IEEE Press, 1986.

[26] C. D. Summerfield and R. F. Lyon, “ASIC
Implementation of the Lyon Cochlea Model,” Proc.
IEEE International Conference on Acoustics, Speech,
and Signal Processing, pp. V-673–676 1992.

[27] A. K. W Yeung and J. M. Rabaey, “A Data-Driven
Architecture for Rapid Prototyping of High
Throughput DSP Algorithms,” VLSI Signal
Processing, V (K. Yao, R. Jain, and W. Przytula, eds.)
pp. 225–234, IEEE 1992.

[28] S. K. Rao and T. Kailath, “Regular Iterative
Algorithms and Their Implementation on Processor
Arrays,” Proc. IEEE 76, pp. 259–269, 1988.

[29] S. Y. Kung, VLSI Array Processors, Prentice-Hall,
1988.

[30] C. H. Slump, C. G. M. van Asma, J. K. P. Barels, and
W. J. A. Brunink, “Design and Implementation of a
Linear-Phase Equalizer in Digital Audio Signal
Processing,” VLSI Signal Processing, V (K. Yao, R.
Jain, and W. Przytula, eds.) pp. 297–306, IEEE 1992.

[31] Y. Ji-ren, I. Karlsson, and C. Svensson, “A True
Single Phase Clock Dynamic CMOS Circuit
Technique,” IEEE J. Solid-State Circ. 22, pp. 899–
901, 1987.

[32] J. Yuan and C. Svensson, “High-speed CMOS Circuit
Technique,” IEEE J. Solid-State Circ. 24, pp. 62–70,
1989.

[33] K. Yano, T. Yamanaka, T. Nishida, M. Saito, K.
Shimohigashi, and A. Shimizu, “A 3.8-ns CMOS
16X16-b Multiplier Using Complementary Pass-
Transistor Logic,” IEEE J. Solid-State Circ. 25, pp.
388–395, 1990.

[34] C. A. Mead and T. Delbrück, "Scanners for
Visualizing Activity of Analog VLSI Circuitry,"
Analog Integrated Circuits and Signal Processing 1,
pp. 93–106, 1991.

[35] J. Burr and A. Peterson, “Energy Considerations in
Multichip Module-based Multiprocessors,” IEEE Intl.
Conf. on Computer Design, pp. 593–600, Oct., 1991.

[36] S. Younis and T. Knight, “Practical Implementation
of Charge Recovering Asymptotically Zero Power
CMOS,” 1993 Symposium on Integrated Systems (C.
Ebeling and G. Borriello, eds.), Univ. of Washington,
in press (and personal communication).

[37] C. Mead, Analog VLSI and Neural Systems, Addison-
Wesley, 1989.

[38] R. F. Lyon and C. Mead, “An Analog Electronic
Cochlea,” IEEE Trans. ASSP 36, pp. 1119–1134,
1988.

[39] R. F. Lyon, “CCD Correlators for Auditory Models,”
25th Asilomar Conference on Signals, Systems and
Computers, IEEE Computer Society Press, 1991.

[40] C. A. Mead, X. Arreguit, and J. Lazzaro, “Analog
VLSI Model of Binaural Hearing,” IEEE Trans.
Neural Networks 2, pp. 230–236, 1991.

[41] Lazzaro, J. and Mead, C., “Silicon models of auditory
localization,” in An Introduction to Neural and
Electronic Networks (S. F. Zornetzer, J. L. Davis, and
C. Lau, eds.), Academic Press, 1990.

[42] L. Watts, D. Kerns, R. Lyon, and C. Mead, "Improved
Implementation of the Silicon Cochlea," IEEE J.
Solid State Circ. 27, pp. 692–700, May 1992.

[43] F. Faggin, “VLSI Implementation of Neural
Networks," in An Introduction to Neural and
Electronic Networks (S. F. Zornetzer, J. L. Davis, and
C. Lau, eds.), Academic Press, 1990.

[44] G. Gilder, MICROCOSM, pp. 145–148, Simon and
Schuster, NY, 1989.

[45] D. Letterman et al., The “Late Night with David
Letterman” Book of Top Ten Lists, Simon & Schuster,
1990.

