
 ©1993 Apple Computer, Inc. All Rights Reserved

Phong Shading Reformulation
for Hardware Renderer Simplification

Apple Technical Report #43

Richard F. Lyon

Advanced Technology Group
Apple Computer, Inc.

August 2, 1993

LIRP

N0 N1

Approx.

Normalize

Dot Product

Reflect

V

N
R

N'

L

Vec. Diff. R–L

Mag Square

D

Multiply by n/2n

x

Shape function

~L•R
n

Specular Amount

L•NDiffuse Amount

a

f k x() = 1! x

2k
"

$
%

2k

D•D

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 1

Phong Shading Reformulation

for Hardware Renderer Simplification

Apple Technical Report #43

Richard F. Lyon
dicklyon@acm.org

Advanced Technology Group
Apple Computer, Inc.

August 2, 1993

©1993 Apple Computer, Inc.

Abstract

The specularity calculation of the Phong shading method is reformulated to
use the squared length of a difference vector in place of a dot product to
characterize the closeness of the viewpoint to the specularity. The new
formulation is easier to compute, using only a modest numbers of
multiplications and additions, and is much better behaved numerically. Due
to the better numerical properties, the new method also allows much simpler
approximations to vector normalization. The reformulation does not
reproduce the standard cosn Phong specularity shape exactly, but allows a
range of options in approximating that shape. This new method is especially
well suited for fixed-point hardware implementation.

Dedication

This report is dedicated to Bui Tuong Phong, whose work before his untimely
death advanced the field enormously. Dr. Bui Tuong is known to me and
many others only through his work and through his colleagues from the
University of Utah graphics group, many of whom I’ve had the pleasure of
knowing and learning from over the last two decades.

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 2

Introduction

The Phong shading method [Bui Tuong73, Bui Tuong75] of generating images of 3D
surfaces with realistic lighting hilites is a popular and standard approach in both
software and hardware renderers. However, it is a computationally expensive
process, and is often omitted in favor of a simpler method, such as Gouraud
shading, when speed matters—especially in real-time hardware.

The computational cost comes from the large amount of per-pixel lighting
calculation that is needed, including one or more square roots to normalize
interpolated vectors, and an exponentiation (typically a log and an exponential) for
the specularity calculation.

We show how to formulate a close approximation to the Phong specularity
calculation, making it easy to compute using only a modest number of
multiplications and additions, and also making it much less sensitive to errors in the
length normalization of direction vectors and to quantization error. In addition, we
present a simple approximate vector normalization technique, using only
multiplications and additions, that is compatible with the reformulated shading
calculation.

Background

Bui Tuong Phong’s shading technique introduced two important but expensive
innovations: first, rather than interpolate colors across surface patches (as in the
predecessor Gouraud shading), it interpolates surface normals and evaluates a
lighting model at each pixel; second, a specular reflection component is added to the
lighting model to produce hilites. The resulting image color at a pixel typically
consists of three components; ambient, diffuse (Lambertian), and specular reflection,
each of which is a product of a material color, a lighting color, and a geometric
factor:

Itotal = CaIa + Σi(CdIdsi(N•Li) + CsIdsi(R•Li)n)

in which the sum is over the set of light sources. Vectors are represented by bold
capital letters. Idsi is the color of the ith light source (for both diffuse and specular
models), and Ia is the color of ambient (non-directional) lighting. Ca, Cd, and Cs are
color vectors describing the reflectivity of the material in ambient, diffuse, and
specular lighting. N is the surface normal direction vector, Li is a direction vector

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 3

pointing from the surface to the ith light, and R is the direction vector of the
viewpoint V reflected off the surface (viewpoint vector V is also commonly referred
to as eye vector E). The material property that controls the concentration of the
specular reflection is the “shininess” n.

In the specularity calculation, sometimes RLi•V is used instead of R•Li, where RLi is
the reflection of the ith light vector off the surface; but that approach requires more
reflection operations when there are multiple lights. We take R as the reflection of V
and omit the subscript i from here on for convenience—much of the calculation will
still need to be repeated in the case of multiple lights.

Figure 1 shows a generalized shader in block diagram form, for a single light and
ignoring the ambient term (which is often not used, or is incorporated in simplified
form as an addition to the diffuse amount). The vectors used in our discussion are
illustrated in Figure 2. The “illumination model” of both of these figures, and much
of what follows, can be applied also in ray tracing, as well to Gouraud shading and
flat shading, though these simpler shading approaches are not generally very good
at handling specularities.

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 4

N L V n

Diffuse
Reflection
Calculator

Specular
Reflection
Calculator

Diffuse
Amount

Diffuse
Reflection

Color

Diffuse
Surface
Color

Light
Color

Specular
Surface
Color

Light
Color

Specular
Amount

Specular
Reflection

ColorTotal Reflection Color
for this Light

XYZ Direction Vector
or RGB Color Vector

Scalar

vv vs vvvsvv

vv

vs

vv

vector-vector
(component-wise)

multiplier

vector-scalar
multiplier

vector-vector
adder

Figure 1: Block diagram of a generalized shader. The block “specular reflection
calculator” is of particular interest in this report. The calculations are repeated and
summed for each light source. In Phong shading, the input N and possibly also L
and V are interpolated across spans of polygons to be shaded. In Phong shading

and in ray tracing, the calculations are repeated for each pixel. In Gouraud shading,
the calculations are done at each vertex, and in flat shading at each polygon. For

some physical illumination models, the light wavelength interacts with the
geometric calculations, or more material properties are required, so the shader can

not be decomposed in quite this way.

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 5

(2V•N)N

L

V

N

(V•N)N
D R

–V

!

surface

unit

circle

Figure 2: Illustration in two dimensions of a typical three-dimensional configuration
of a surface being rendered, with surface normal N, light vector L, viewpoint vector
V, reflected viewpoint vector R, angle α, and difference vector D. The construction

of the reflected vector R = 2(V•N)N–V is illustrated in terms of the projection
(V•N)N of the viewpoint vector onto the surface normal vector.

When the lights and viewpoint are at an infinite distance from the object, their
direction vectors do not vary across a surface patch or span, so only the surface
normal needs to be interpolated and normalized. More generally, the lights and
viewpoint may be “local,” or in the vicinity of the object being rendered, in which
case their directions will need to be interpolated and normalized as well. In some
systems, the viewpoint may be local but the lights at infinity.

The diffuse term, modeled by Lambert’s law N•L, does not depend on the
viewpoint, but requires surface normals and light vectors of unit length. A vector
linearly interpolated between unit-length direction vectors has a length less than
unity, and is corrected by dividing by the square root of the dot-product with itself.
The divide and the square root are usually relatively expensive. The accuracy
requirements on the normalization are not particularly severe—the final intensity is

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 6

simply proportional to each vector length, so up to a 1% maximum normalization
error might be acceptable for the diffuse term.

The same normalization step is used for the vectors in the specular term, where
normalization errors in N and V both affect R. But in this term, the dot product R•L
is raised to the nth power, where n, the material’s “shininess coefficient” is
sometimes as high as several thousand, resulting in tremendous error magnification.
In systems that use this formulation directly, the error magnification puts severe
accuracy requirements on the normalization operation—typically 16 bits of
precision—which means that it is difficult to use a low-cost approximation. The
exponentiation is similarly constrained to be an accurate operation on a 16-bit input.

Phong Specularity Reformulation

The specular coefficient (R•L)n may be thought of as the function cosnα of the angle
α between the light direction L and the reflected viewpoint R. The key to our
reformulation is to compute a similar function of α from the difference R–L instead
of from the dot product, and thereby to avoid the exponentiation and to a large
extent the error magnification. This reformulation was developed as a good
approximation for a fixed-point hardware renderer, but it also provides advantages
in software, potentially even in floating-point implementations.

The key to the reformulation is the observation that the angle α is approximately
equal to the length of the difference vector D:

α ≈ D = R–L

Actually, the length of D is 2sin(α/2), which is monotonic up to an angle of
α = π ≈ 3.14 (180°), where D is 2. At α = π/2 ≈ 1.57 (90°), D is about 1.41, which
is not too terrible; the approximation is excellent for smaller angles.

Using D for α, the function cosnα can be approximated in various ways.
Fortunately, cosnα is an even function, so it can be computed from the squared
length of D, which is D•D, avoiding the square root inherent in D. Using α2 =
D•D, we can write the Taylor series expansion of cosα and find the leading term of
its nth power:

cos
n
! = 1" 1

2
!
2
+ 1
4!
!
4
+…()

n

1" n
2
!
2

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 7

Therefore, a plausible first approximation for (R•L)n is 1–(n/2)D•D. For better
approximations, it will be convenient to first define the intermediate value x:

x = (n/2)D•D

We consider “shape functions” f(x) that define the shape of the specular reflection in
terms of the squared length of the difference vector times half the surface shininess
coefficient. Call this first approximation f0(x):

f0(x) = 1 – x

When the difference vector D is zero, the reflected view direction looks directly into
the light. In this case, f(0) correctly matches cosnα at 1.0 (assuming normalized
inputs—we’ll discuss the error sensitivity later). As the light and viewpoint move
away from their reflection relationship, x increases in proportion to the surface
shininess and the squared distance. Soon, f0(x) becomes negative, which is
nonsensical. Therefore, we define f0(x) to be zero for x>1.

Notice that the specularity has an angular size that can be characterized by a
nominal radius 1/sqrt(n), where x is 1/2. For large n, cosnα falls to about exp(–1/2)
= 0.6065, like a Gaussian at one standard deviation out; the approximation f0(x) falls
to 1/2 at this nominal radius, which is a significant but not gross error.

For a better approximation, we could take more terms of the Taylor series for cosnα,
but we don’t expect that that approach would give a very good result, knowing how
ill-behaved Taylor series tend to be. Instead, we want to assure that f(x) will
smoothly approach zero for large values of x, in the nature of the bell-shaped cosnα
function. Where 1–x crosses zero linearly, we can get a smooth quadratic approach
to zero by squaring 1–x, but this also narrows the main peak of the shape function.
We compensate by dividing x by two, to arrive at the following second
approximation which still matches the Taylor series quadratic term:

f1(x) = (1 – x/2)2

Since squaring is cheap, and squaring the square is not much worse, we are able to
make a general family of shape functions by repeating the above modification as
follows:

f2(x) = (1 – x/4)4

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 8

fk(x) = (1 – x/2k)2k

The general form looks imposing, since it has the exponential 2k in the exponent; but
it is computed simply as k successive squarings. And the factor 2k that multiplies x
is just a shift (in a fixed-point system). In each case, the function fk(x) should be
taken as zero for x>2k. Functions with k of 0 or 1 may be useful, and k=2 provides
an approximation that is visually indistinguishable from true Phong shading.

These shape functions are plotted as a function of α for n=100 in Figure 3, along with
cosnα (for this large n value, we don’t need to correct for the error between α and
the length of D). Some people think that the standard Phong specularity shape has
too broad a tail; they might prefer the simpler approximations with k of 0 or 1.

0.1 0.2 0.3

0.2

0.4

0.6

0.8

1

cos !

!

k = 0

k = 1

k = 2

nominal specularity half-width
1/sqrt(n) = 0.1 rad, for n = 100

n

Figure 3: Specularity shapes as a function of angle α, compared to the standard
Phong shape cosnα, illustrated for n=100.

The approximation to cosnα breaks down for very small n, for two reasons. First,
the length of D is significantly less than α for large angles; second, the function
cosnα depends on n and α separately, not exactly on the product nα2. In particular,
cosnα goes to zero at α=π/2, independent of n, rather than at a particular value of
nα2. For n=1, f1(x) doesn’t go to zero until α=π, and f2(x) never goes to zero. For
n=4, f1(x) goes to zero at α=π/3, and f2(x) goes to zero at α=π/2, which are much more
reasonable. These very low n values probably don’t matter in many cases, but if

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 9

they do, at least the reformulated specular reflection still falls off from the peak at
the right quadratic rate.

Length Error Sensitivity

Unfortunately, the functions (R•L)n and fk(x) depend not only on the angle α, but
also on the lengths of the vectors R and L. For example, suppose L is unit length,
but R is of length 1–ε. Then when R aligns with L, such that α is zero, (R•L)n is (1–
ε)n, while fk(x) is about 1–(n/2)ε2, which is much closer to unity. The relative errors,
if small enough, are well approximated by nε and (n/2)ε2. Thus for a relative error
of 5% at the specularity peak, and n of 1000, the standard formulation requires
e<0.00005 (1 part in 20,000 normalization accuracy—more than 14 bits), while the
new formulation allows e<0.01 (only 1 part in 100—fewer than 7 bits). So we should
be able to get away with a cheap approximate normalization with up to about a 1%
residual length error (more or less, depending on the maximum n used and the
maximum angle interpolated across).

Approximate Normalization

A vector N' is normalized to produce N by multiplying by 1/sqrt(N'•N'), so for cost-
effective hardware we need a good approximation to a reciprocal square root. A
Taylor series expansion about 1 is a good start, using z to represent N'•N':

g z() =
1

z
= 1! 1

2 z !1() + 3
8 z !1()2 + …

If the vectors being interpolated are well normalized to unity length at the ends of
each span, the linearly interpolated vectors will be shorter than unity length; in fact,
they can be as short as cos(θ/2) if the vectors at the ends of the span are at an angle θ
from each other. The length can approach zero only if the vectors are nearly 180°
apart, which can happen only for a local light or a local viewpoint very close to a
surface. With little loss of generality, we can consider θ to be restricted to 90°, in
which case the squared length is not less than 1/2.

Since x is less than 1 in the usual case, we negate z–1 in the Taylor series to a positive
error y = 1–z, and consider the following approximations of first and second order:

g1 z() = 1+
1
2 1! z() = 1+

y
2

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 10

g2 z() = 1+
1
2 1! z() + 12 1! z()2 = 1+

y+y2

2

In the second-order case, we use an ad hoc modification of the second-order Taylor
series coefficient, overcorrecting for a better overall fit as seen in Figure 4—the
coefficients are also nicer, being in common and a power of two.

When y is 1/2, the maximum error for interpolating across 90°, the correct answer is
g(z) = 1.414. The approximations give g1(z) = 1.25 and g2(z) = 1.375, for errors of just
under 12% and 3%, respectively. The former is probably too much error, but the
latter is probably acceptable—it implies a significant (factor of two) reduction in
specularity height near the middle of a span for very shiny (n = 1000) surfaces when
interpolating across large angles (90°).

Figure 4 shows the length of vectors after approximate normalization for the first-
and second-order approximations, and shows that the second-order approximation
is good to better than 0.5% for input vector lengths as low as 0.8, corresponding to
interpolation across more than 60°, which is plenty for surface normals in reasonable
object models. The first-order approximation is seen to be reasonable only over a
more limited range. Note that the second-order version over-corrects vectors of
length near 0.9 to a final length of about 1.002, which is a completely negligible error
for our purposes.

simpler
normalization
approximation

better
normalization
approximation

length
of N'

length
of N

0.8 0.85 0.9 0.95

0.99

1.01

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 11

Figure 4: Graph of the length of an approximately normalized vector as a function
of the length of the original vector, for first order (lower curve) and second-order

(upper curve) approximations.

Gaussian and Exponential Relationships

After reformulating the specular reflection model more as less as described above,
we noticed a simpler approach based on approximately Gaussian specular reflection
shapes and on an exponential approximation. We also observe that a number of
physical models have been invoked in deriving various related specular reflection
shapes, including Gaussian, which are mostly well approximated the same way
[Blinn77].

The key exponential relationship we need is

(1 + x/K)K ≈ exp(x) for x/K << 1

In addition, we use the definition of a zero-mean Gaussian:

exp(–(1/2)(x/σ)2)

We also need cosnα in terms of α, either using the Taylor series as before, or this
way using sinα ≈ α:

cosnα = (sqrt(1 – sin2α))n = (1 – sin2α)(n/2) ≈ (1 – α2)(n/2)

For large n and small α, the above is recognized as a Gaussian of standard deviation
σ = 1/sqrt(n), by applying the exponential approximation:

cosnα ≈ (1 – α2)(n/2) ≈ exp(–(n/2)α2)

Working from the Gaussian back to the exponential form with a different specified
exponent, one obtains the reformulated shape function, where now K is a more
general form for the previous 2k:

cosnα ≈ exp(–(n/2)α2) ≈ (1 – (n/2K)α2)K

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 12

To complete the derivation, α must be approximated by the length of the chord or
difference vector D, as before. Of course, for ease of implementation using
successive squarings, K should still be chosen to be a power of two.

The Half-way Vector Approach

Figure 5 illustrates, using a vector diagram similar to that of Figure 2, three
alternative ways to compute a difference vector D using a half-way vector H defined
by H = V + L, half way between the light and viewpoint, rather than by using a
reflected vector R.

In the method of Figure 2, vector D was calculated as D = R–L, or D = (2V•N)N–V–
L. As a first method in Figure 6, we show a vector D1, which is identical to vector D,
which may be seen by substituting –H for –V–L in the definition of D to obtain
difference vector D1 as D1 = (2V•N)N–H. But now the difference is expressed
relative to the half-way vector H.

In Figure 5 we have found it convenient to illustrate the calculation of (2V•N)N by
first doubling vector V to obtain vector 2V, and then projecting it onto N, rather
than by first projecting and then doubling as in Figure 2; this difference is not
relevant except to reduce clutter in the center of the vector diagram.

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 13

D1

D3

D2

(2V•N)N

(H•N)N

(2L•N)N

2V

L

V

2L

N

H

surface

H*

Figure 5: Vector diagram showing three ways to use an un-normalized

half-way vector H = V+L to compute a difference vector.

As mentioned above, instead of comparing the light vector with the reflected
viewpoint vector, the same result (in terms of dot product) may be obtained by
comparing the viewpoint vector with the reflected light vector. Correspondingly, in
our reformulation, a difference vector may be generated by subtracting a viewpoint
vector from a reflected light vector. This method is not illustrated explicitly, but
produces the identical vector as the second approach illustrated in Figure 5, which
computes D2 as D2 = (2L•N)N–H, using the half-way vector H and the projection of
the doubled light vector 2L onto N.

Vector D2 is not equal to vector D1, but their lengths are equal, so they may be used
interchangeably—ignoring normalization imperfections. A third method of
computing a difference vector D3 that is not equivalent is motivated by the
observation that 2V and 2L appear in equivalent places in the definitions of
equivalent vectors, so perhaps V+L would work as well or better. This reasoning
leads to the computation of vector D3 as D3 = (H•N)N–H, the difference between
the half-way vector H and its projection (H•N)N onto N. We have not yet analyzed
the extent to which this variation might impact the appearance of a rendered image,

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 14

as might be expected particularly in the case of grazing angles of reflection, where a
short H would tend to produce a short D, for an increased reflection; this effect
could be a feature or a bug.

In the half-way vector approach of Blinn [Blinn 1977], the normalized half-way
vector H* is used, and H•N is used as the basis of the specular reflection
computation. Our D3 method may be viewed as an improvement of Blinn’s method,
since it entirely avoids the need for a normalization of the half-way vector—we need
the projection operation instead, but no square root or divide. The half-way vector
is in general difficult to normalize accurately, since the length of E+L may be near
zero, even at a maximal specularity. If it is desirable to better approximate Blinn’s
method, it is possible to normalize or approximately normalize H to obtain H*, and
to then compute D as a difference either between H* and N or between H* and its
projection (H*•N)N. These additional methods are not illustrated. There may be a
variety of other ways to compute a difference vector whose length is useful as an
indicator of the extent to which the configuration being rendered deviates from the
maximal specular reflection.

Pixel Shading Hardware Datapaths

Figure 6 shows a block diagram of a portion of a hypothetical hardware
arrangement that uses the first version of our reformulation—i.e., the version with
the reflected viewpoint vector. Linear interpolation (LIRP) and approximate
normalization are shown only for the surface normal, but could also be used for the
light and viewpoint vectors. We show only basic data paths, and not the logic that
controls iterations over multiple lights—it’s clear from the diagram which parts
depend on L and would need to be repeated.

The dot product and exponentiation calculations of the standard Phong renderer
have been replaced by the more easily implemented reformulation as shown. The
squared magnitude of the difference vector D, the dot product of D with itself, is
multiplied by shininess n to generate the intermediate scalar x. We show a divide
by two here, based on our chosen definition of x, but since the next block divides x
further, the shifts would probably be combined into one place—so don’t take the
hardware block diagram too literally. Finally, a shape function fk(x) is performed on
x to simulate the drop-off of specular reflection with distance from the specularity.
Internally, the shape function is just a shift, a subtraction, and zero or more cascaded
squaring operations. Unlike typical implementations using exponentiation and
exact normalization, this one uses no tables and no iterations.

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 15

LIRP

N0 N1

Approx.

Normalize

Dot Product

Reflect

V

N
R

N'

L

Vec. Diff. R–L

Mag Square

D

Multiply by n/2n

x

Shape function

~L•R
n

Specular Amount

L•NDiffuse Amount

a

f k x() = 1! x

2k
"

$
%

2k

D•D

Figure 6: Block diagram of Phong shading diffuse reflection and
specular reflection calculators, showing surface normal interpolation

and approximate normalization.

Expanding on Figure 6, a more detailed hardware data path diagram is shown in
Figure 7, annotated with plausible numbers of bits of fixed-point data representation
at each point, specified as n.m for n+m bits with n bits of left of the point and m to
the right, or Sn.m for signed values totaling 1+n+m bits. The proposed bit counts
have not been simulated, and may have been too aggressively reduced in some
cases. An extra high bit may be needed at some locations for edge-condition values
(e.g. exactly 1.0). Additional tests may also be needed; for example, the “backside”

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 16

test N•L < 0 is usually applied to zero the diffuse component, but would introduce a
small discontinuity if used to zero the specular component.

Figure 7 (parts a–d) is a detailed diagram of the specular reflection calculator in
terms of elementary arithmetic operations, using the method of Figure 2 and the
structure of Figure 6. Figure 7a shows the calculation of the interpolated and
approximately normalized normal vector N. Figure 7b shows the Reflect operation
that calculates the reflected viewpoint vector R from N and V. Figure 7c shows the
calculation of the difference vector D, its squared magnitude, and the intermediate
scalar value x (actually 2x in this case). Figure 7d shows the calculation of the final
specular amount as a shape function of x. The calculation of diffuse amount N•L is
not shown. Triple lines represent X, Y, Z datapaths, and are not meant to imply a
particular choice of parallelism versus serialization of the data and calculations.

In Figure 7a, surface normal vectors N0 and N1 representing two corners or edges of
a surface patch to be rendered are provided as input to a linear interpolator, which
produces the linear combination N' as determined by the interpolation factor “a”,
which is applied as a weighting factor on N1. A “1–” block subtracts its input from
unity to produce “1–a” as a weight for N0. An equivalent linear interpolation
hardware structure might merge the subtraction and two multipliers into a single
structure. An approximate normalization operation on N' follows. The dot product
N'•N', representing the squared length of N', is provided as the input “z” to the
g2(z) approximation of the reciprocal square root, as discussed above. The result is
used to scale N', to produce an approximately normalized normal vector N.

With 10-bit fractional parts on all the direction vectors, length errors and angle
errors will correspond to less than 0.001 radian, except when interpolating across
large angles, in which case the approximation will introduce more error. The error
of 0.001 radian is small compared to the smallest specularity angular radius, unless n
is allowed to approach a million, so it should not be a big contributor to the final
error.

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 17

1–a

N1 N0

N' =
aN1+(1–a)N0

z = N'•N'

1–

/21+

N

~1/sqrt(z)

y = 1-z

Dot Product
Calculator

g (z)
Calculator

2

S0.10

S0.11

12x12

S0.21

1.11

S0.11

S1.10

S1.10

S1.20

S1.10

10x10

1.12

0.12

1.10

S0.10 S0.10

0.11

11x11

S0.10

11x11

S0.13

S0.13

Figure 7a: Interpolation and Normalization

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 18

Figure 7b shows the Reflect operation. Normal vector N and viewpoint vector V are
dotted to produce N•V, which is then doubled and multiplied by N to produce the
projection (2N•V)N. Finally, subtractors compute the reflected viewpoint vector R.

N V

R = (2N•V)N–V (Reflected Viewpoint)

N•V

x2

2N•V

(2N•V)N

S0.10

S0.10
S0.10

11x11

S0.10

S0.20

S1.9

11x11

S0.10S1.10

S0.20

S1.19

Figure 7b: Reflection of Viewpoint about Normal

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 19

Figure 7c shows the computation of D as the vector difference R–L, followed by the
dot product of D with itself, D•D, which is the squared length of D. Finally,
intermediate value 2x is calculated by multiplying by the material shininess
parameter n. A rather large multiplier is needed for this operation, since n can be
large or small (1 to 8000 in the example) and it scales the wide dynamic range of
D•D into an even wider range number 2x, of which the fractional part represents
the smaller range over which the shape function is nonzero.

D = R–L

Vector

Subtractor

n

R
L

Dot Product

Calculator

2x = n|D|
2

D•D = |D|
2

S0.10

14.0

12x12

S0.10

S1.10

2.20

2.20

16.20

14x22

16.9

Figure 7c: Difference Vector and x calculation.

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 20

In Figure 7d, the intermediate value 2x is arithmetically to the right by 3 places,
producing x/4. The “1–” block computes 1–x/4. Two multipliers are connected as
successive squaring circuits to compute the fourth power (1–x/4)4. A comparison of
x/4 to unity controls the output multiplexor to select either (1–x/4)4 if x/4 is less
than unity, or zero otherwise, to produce the specular amount.

shift right
3 places

x/4

(1–x/4)

1–x/4

Specular Amount

2x

0

! 1 ?

1–

two
squaring
stages(1–x/4)

2

4

13.0

0.8

0.8

0.9

9x9

0.20

0.10

10x10

0.12

0.12

13.12

16.9

Figure 7d: Shape function calculation for k=2.

The particular structure described in Figure 7 is based on the choice of shape
function characterized by k=2. A shape function characterized by a different value
of k can be implemented simply by changing the shifter to shift by k+1 places and
changing the number of successive squaring multipliers to be k, with no further
changes.

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 21

Hardware Rearrangements for Bit Reductions

The wide dynamic range of the shininess coefficient n is itself a problem when
designing an efficient hardware renderer, adding ten or more bits to the accuracy
requirements on the D•D calculation. Since n represents a specularity with angular
radius of sqrt(1/n) radians, we propose to substitute a modified shininess parameter
m = sqrt(n), which specifies a specularity of angular radius 1/m. If m is an integer
from 1 to 63, for example, it covers the same range of shininess as n from 1 to 4000,
though in coarser steps. The calculation x = (n/2)D•D is still easy, multiplying the
three components of D by m, rather than the dot product by n: x = (1/2)mD•mD .

While this approach appears to be more complex, using three multiplications in
place of one, it can have significant beneficial impact on fixed-point hardware due to
quantization issues.

Figure 8 shows a detailed diagram of an alternative implementation of the portion of
a specular reflection calculator following the computation of the difference vector D,
but using m instead of n. The computation proceeds as follows: difference vector D
is rectified (absolute value of each component) for reasons that will become apparent
shortly; the rectified vector D* is multiplied by the parameter m to produce vector
mD*; the dot product operator computes (m|D|)2, corresponding to x/4. The shape
function is as in Figure 7d, except that we use k=1 in this example and the
comparator is augmented with more inputs to be compared to unity.

As described above, the implementation of Figure 8 will produce approximately the
same result as the one of Figure 7, with the absolute value operators and the
augmentations to the comparator having no effect. The scheme of Figure 8 is
apparently more costly than that of Figure 7, since it uses two more multipliers to
multiply three vector components by m than to multiply a scalar by n. But this
scheme may be preferred in a hardware implementation because much smaller
multipliers can be used, due to numerical advantages of this rearrangement. In
particular, the dot product operator needs to accept as input only the bits
representing the fractional parts of the vector components, if the components are
positive as assured by the absolute value operators, and if the integer parts are
detected by the augmented comparator. Many multiplier bits are saved; for
example, the six 7x11 and 9x9 multipliers are likely to be smaller and faster than the
three 12x12 and one 14x22 required for similar accuracy in the arrangement of
Figure 7.

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 22

D

Comparator
any in ! 1 ?

m = "n

x/2 = (m|D|) /4

1–x/2

Specular Amount

0

1–

D*

Single squaring
for k=1 case.

(1–x/2)
2

/2

2

S1.10

0.9

1.10
7.0 6.1

7x11

9x9

2.11

0.11

2.0

0.9

7.11

7.0

0.18

0.11

0.8

0.8

9x9

0.11

Figure 8: Hardware portion modified to use the proposed
“root-shininess” parameter m and generally fewer bits.

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 23

Simulation Results

In order to test the appearance of shiny objects rendered using the proposed new
specularity formulations, we have hacked together a simple test program in
MATLAB (a “matrix laboratory” interactive environment available on most
computers, including Macintosh). The few pages of code involved are shown in the
appendix so that details may be verified and duplicated.

The simulation shades only unit-radius spheres, which have the nice property that
the surface normal at any point is equal to the location of the point, with the sphere
center as origin. The form of the figure is modeled after figures comparing Phong
shading with the Blinn H•N variant in The Renderman Companion [Upstill90].

To further simplify the test, light and viewpoint vectors are constant (at infinity, as
opposed to “local”), and colors are monochrome. Since polygons and spans are not
used, no normal vector interpolation is done, and the approximate normalization
performance is therefore not tested—only the specularity shape is tested. By fixing
the viewpoint at (0,0,1), we implicitly project object points [x,y,z] to image points
[x,y], so that it is easy to go from the image point to the object point and normal
vector as [x,y,sqrt(1–x2–y2)]. Multiple spheres are rendered as if each is at the origin,
and their images are overlapped by offsetting image plane indices. Thus, in this
simple test program we have no explicit representation of objects, spans, colors, or
depths, and no explicit computation of projection, hidden surface removal, etc. Two
light source locations and some other parameters are specified as constants in the
MATLAB code script. The function file specfuns.m returns of a vector of specular
amounts determined by each of the methods being compared, saving lots of
duplicated overhead that would result by rendering separately by each method.
Within specfuns.m, we attempt to give the shininess coefficient n a consistent
interpretation in terms of the quadratic rate of falloff of the specularity from its peak
(i.e., the first nontrivial Taylor coefficient as a function of angle α or approximate
equivalent); this interpretation of specularity “width” is much simpler than Blinn's β
definition [Blinn77], but may be less meaningful for very small n.

The code in the appendix produces the result presented in Figure 9, which shows
dark (low diffuse reflectivity) spheres lit by two point light sources, one to the right,
high, and in back of the spheres, and the other to the right, low, and in front (i.e.
light direction vectors parallel to [1,1,-1] and [1,-1,1]). Five different shininess values
are tested, and twelve different specularity formulations, as noted in the figure. The
leftmost column, with n=1, is not a particularly useful case, but shows up some of
the bad edge effects of some of the formulations in this limiting case. For example,

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 24

the original Phong method specularity shape goes abruptly to zero for n=1 but not
for n>1; the Blinn (H•N)4n method avoids this behavior at approximately the same
specularity width, since it uses a four times greater exponent for a given width.

The first thing to notice is that for n>4 or so, all the methods work OK, with the
exception of row 10, which loses the glancing hilite. This defect is due to the vector
D = Hg2(z)–N never getting very short since Hg2(z) is not well normalized (even in
this case, where approximate normalization g2(z) is used, since H can start out way
too short); that's why we suggest the projection of H onto N—so that the distance
goes to zero when the angle goes to zero, even if the length is off. Note that in the
code we define H = (L+V)/2, so that’s its length is always unity or less.

Next, getting to the detail of specularity shape relative to our k parameter, notice
that the k=2 shape (row 4) is essentially indistinguishable from the cosnα shape,
which is quite “fuzzy,” for large enough n. The k=1 shape (row 3), which is a little
easier to compute and behaves a little better for small n, actually looks “better”
(according to the author and certain other individuals who shall remain anonymous
for their own protection). This result holds for both the Phong-like and Blinn-like
versions (rows 8 and 9). The k=0 shape (row 2), on the other hand, drops too
abruptly to look good; in fact, at n=1, it looks just as bad as the original Phong
version, which it approximates excellently at that point.

The next thing to notice is the different shape of the glancing hilite between the
Phong-like methods (1–4) and the Blinn-like methods (5–12), due to the different
way that the angle between L and R evolves compared to that between H and N, in
three dimensions. This difference is explicitly compared in the figure on page 318 of
The Renderman Companion [Upstill90], but is difficult to appreciate there due to the
non-comparable parameter values and different amounts of saturation in that figure.
Row 6 shows an excellent approximation to Blinn’s method, but requiring a
normalization of H.

The H•N specularity function is not really what Blinn proposed, but is only the
“D1” (distribution of surface normals) factor from his more complex model. This
function is widely used by itself, however, and in many cases is actually referred to
as the Phong specularity model, as explained by Hall [Hall89, p. 77]. Blinn also
proposes other shapes “D2” and “D3” which are functions of the same angle, lead to
similar appearance, and would lead to identical approximations under our proposed
reformulation. The “D2” or “Torrance and Sparrow” function (row 11), being a
Gaussian, would be identical to “D1” for large n and more like our reformulation for

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 25

small n. The “D3” or “Trowbridge and Reitz” function (row 12) is even more
“fuzzy” than the cosnα and Gaussian shapes, and never drops to zero.

1. Phong

2. D = R – L
 k = 0

3. D = R – L
 k = 1

4. D = R – L
 k = 2

5. Blinn D1

.
 n = 1 n = 4 n = 16 n = 64 n = 256

Figure 9: Shiny black balls as rendered by the MATLAB test program,
with five shininess values n in each row, and a row for each of twelve

techniques (continued on next page with one row duplicated).

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 26

8. D = Hg2(z) – projection

 k = 2

9. D = Hg2(z) – projection

 k = 1

5. Blinn D1

6. D = H* – N
 k = 2

7. D = H – projection
 k = 2

10. D = Hg2(z) – N

 k = 2

11. Torrance & Sparrow
 (Blinn D2, Gaussian)

12. Trowbridge & Reitz
 (Blinn D3)

.

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 27

Conclusions

The reformulation of Phong shading in terms of a distance instead of a dot product
leads to a simpler hardware implementation with less numerical difficulty, because
the length of a chord between two vectors is a simpler and more sensitive way to
measure their alignment than a dot product is. Besides leading to simpler hardware,
improved or faster software implementations may also be enabled by this
reformulation.

Acknowledgments

The author thanks Stephanie Winner, Mike Kelley, Kirk Gould, Frank Crow, and
Ken Turkowski for many useful discussions and lots of good background
information on rendering in hardware and software. Special thanks go to Stephen
Johnson for implementing and testing a software version of this work, which will be
described in a subsequent report.

Appendix — MATLAB™ Simulation Code

-----------file specular.m-----------

% test of specular amount calculation

m = 64; % 64 steps from 0 to 1 radius of sphere.
ns = [1 4 16 64 256]; % shininess values to show
specfs = ns.^0.25; % specular amounts 1 to 4
specfs = 400/max(specfs)*specfs % max specular amount to 400
diff = 35; %diffuse factor
amb = 0; %ambient amount
bg = 255; %bright background

lv1 = [1 1 -1]; % light high in back right
lv2 = [1 -1 1]; % light low in front right
lv1 = lv1*1/sqrt(sum(lv1.*lv1)); % first light vector
lv2 = lv2*1/sqrt(sum(lv2.*lv2)); % second light vector
vv = [0 0 1]; % viewpoint vector
mmax = m*length(ns)

ny = length(specfuns([0 0 1],lv1,vv,1,0)); % number of functions to test
dj = (0:ny-1)*(2*m-floor(m/2)); % y displacements by 1.5 radii

clear pic;
pic = bg*ones((1+length(ns))*m+1,2*m+1+max(dj)); % image buffer, background

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 28

for i = -m:1:mmax; % x iteration
 fprintf('%g ',i);
 ii = m+1+i;
 xx = (0.5+i)/m;
 for j = -m:1:m % y iteration
 jj = m+1+j;
 y = (0.5+j)/m;
 for ni = 1:length(ns); % search through spheres
 n = ns(ni); % material shininess n for this sphere
 specf = specfs(ni); % specularity factor for this sphere
 x = xx - (ni-1); % unit radius offset spheres from left to right
 z = (1 - x*x - y*y);
 if z >= 0;
 z = sqrt(z);
 break; % jump out when first sphere is found
 end;
 end
 totals = amb*ones(1,ny);
 if z >= 0; % case where sphere was found
 nv = [x y z]; % x,y,z are now coordinates of normal to (hemi)sphere
 dif1 = lv1*nv'; if dif1 > 0; totals = totals + diff*dif1; end;
 dif2 = lv2*nv'; if dif2 > 0; totals = totals + diff*dif2; end;
 totals=totals+specf*(specfuns(nv,lv1,vv,n,ny)+specfuns(nv,lv2,vv,n,ny));
 pic(ii,jj+dj) = totals;
 end;
 end;
end;
writeimagefile(pic,'shinyballs');

-----------file specfuns.m-----------

function amounts = specfuns(nv,lv,vv,n,len)
%function amounts = specfuns(nv,lv,vv,n,len) -- multiple versions

amounts = zeros(1,len); % (maybe) allocate place for results
count = 0; % number of specularity models done so far

rv = 2*nv*(vv*nv')-vv; % reflected view vector
hv = (lv+vv)/2;
hl = hv*hv'; % hv length^2
dl = 1-hl; % length error z
hv1 = (1+0.5*(dl+dl*dl))*hv; % approx. normalized halfway vector
hv2 = 1/sqrt(hl)*hv; % normalized halfway vector
n4 = 4*n; % "n" for halfway vector method

% 1. Phong method
dot = rv*lv';
if dot > 0;
 amount = dot^n;
else;
 amount = 0;
end;
count = count+1; amounts(count) = amount;

% Lyon main method, several k values for this D vector and x value
dv = lv - rv; % difference vector

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 29

xs = (dv*dv')*n/2;

% 2. Lyon k=0
if xs > 1;
 amount = 0;
else;
 amount = (1 - xs);
end;
count = count+1; amounts(count) = amount;

% 3. Lyon k=1
if xs > 2;
 amount = 0;
else;
 amount = (1 - xs/2);
 amount = amount*amount; % -- square k=1 times
end;
count = count+1; amounts(count) = amount;

% 4. Lyon k=2
if xs > 4;
 amount = 0;
else;
 amount = (1 - xs/4);
 amount = amount*amount;
 amount = amount*amount; % -- square k=2 times
end;
count = count+1; amounts(count) = amount;

% use n4 (4*n) in all the h-vector methods

% 5. Blinn method
dot = hv2*nv';
if dot > 0;
 amount = dot^n4;
else;
 amount = 0;
end;
count = count+1; amounts(count) = amount;

% 6. Lyon/Blinn halfway method, normalized hv2, k=2
dv = hv2 - nv; % difference vector
xs = (dv*dv')*n4/2;
if xs > 4;
 amount = 0;
else;
 amount = (1 - xs/4);
 amount = amount*amount;
 amount = amount*amount; % -- square k=2 times
end;
count = count+1; amounts(count) = amount;

% 7. Lyon halfway method, no norm of h, k=2
dv = hv - nv*(hv*nv'); % difference vector to projection
xs = (dv*dv')*n4/2;
if xs > 4;
 amount = 0;
else;

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 30

 amount = (1 - xs/4);
 amount = amount*amount;
 amount = amount*amount; % -- square k=2 times
end;
count = count+1; amounts(count) = amount;

% 8. Lyon halfway method 2, projecting hv1, k=2
dv = hv1 - nv*(hv1*nv'); % difference vector
xs = (dv*dv')*n4/2;
if xs > 4;
 amount = 0;
else;
 amount = (1 - xs/4);
 amount = amount*amount;
 amount = amount*amount; % -- square k=2 times
end;
count = count+1; amounts(count) = amount;

% 9. Lyon halfway method 2, projecting hv1, k=1
% same xs from above
if xs > 2;
 amount = 0;
else;
 amount = (1 - xs/2);
 amount = amount*amount; % -- square k=1 times
end;
count = count+1; amounts(count) = amount;

% 10. Lyon halfway method 3, hv1 no projection, k=2
dv = hv1 - nv; % difference vector --
xs = (dv*dv')*n4/2;
if xs > 4;
 amount = 0;
else;
 amount = (1 - xs/4);
 amount = amount*amount;
 amount = amount*amount; % -- square k=2 times
end;
count = count+1; amounts(count) = amount;

% 11. Blinn method D2 (Torrance and Sparrow)
% using some algebra and angular standard dev. of 1/sqrt(n4)
%dot = sum(hv2.*nv);
alpha = acos(dot);
amount = exp(-(n4/2)*alpha*alpha);
count = count+1; amounts(count) = amount;

% 12. Blinn method D3 (Trowbridge and Reitz)
% using some algebra and n in place of (1/c2^2 - 1)
%dot = sum(hv2.*nv);
if dot > 0;
 amount = (1/(1+(1-dot*dot)*n))^2;
else;
 amount = (1/(1+n))^2; % as low as it gets!
end;
end;
count = count+1; amounts(count) = amount;

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 31

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 32

References

The original Phong shading papers:

[Bui Tuong73] Bui Tuong Phong. “Illumination for Computer-Generated Images,”
Ph. D. Dissertation, Department of Computer Science, University of Utah, Gov.
ordering no. AD-A008 786, 1973.

[Bui Tuong75] Bui Tuong Phong. “Illumination for Computer-Generated Pictures,”
Comm. ACM 18(6), pp. 311–317, June 1975. (also reprinted in: Beatty, J. C. and
Booth, K. S. (eds.). Tutorial: Computer Graphics, Second Edition, IEEE Comp. Soc.
Press, Silver Spring, MD, 1982.)

This paper shows the half-way vector method and proposes a different
simplification of the shape function, still in terms of the dot product of accurately
normalized vectors, and requiring a divide instead of an exponentiation; also shows
a Gaussian specularity shape:

[Blinn77] Blinn, James F. “Models of Light Reflection for Computer Synthesized
Pictures,” Computer Graphics, ACM SIGGRAPH ’77 Proceedings, pp. 192–198.

This book compares Phong’s and Blinn’s specularity formulations:

[Upstill90] Upstill, Steve. The Renderman Companion, Addison-Wesley, 1990
(second printing with corrections, 1992).

Hall’s book is the best reference on illumination models; it analyzes and compares
Phong, Blinn, Torrance and Sparrow, Trowbridge and Reitz, etc.

[Hall89] Hall, Roy. Illumination and Color in Computer Generated Imagery, Springer-
Verlag, 1989.

Lyon, Richard Phong Shading Reformulation… 20 July ’93

Apple Computer, Inc. 33

Additional Reading

Here’s the hardware project that got me interested in this topic, though the version
reported does not include Phong shading:

Kelly, M., Winner, S., and Gould, K. “A Scalable Hardware Render Accelerator
using a Modified Scanline Algorithm,” Computer Graphics, ACM SIGGRAPH ’92
Proceedings, 26(2), pp. 241–248, 1992.

These are previous attempts to speed up Phong shading, but are not referenced in
the text:

This one uses a 2D Taylor series centered in each polygon to approximate the dot
product, and then uses a table to exponentiate:

Bishop, Gary, and Weimer, David M. “Fast Phong Shading," Computer Graphics,
ACM SIGGRAPH ’86 Proceedings, 20(4), pp. 103–106, 1986.

This paper proposes a method of angle interpolation via quaternions, to avoid the
need for normalization, and provides another simplification of the Phong shape
function, based on fitting three quadratic segments. They show how to reduce the
whole process to a quadratic Gouraud-like interpolation, with possible additional
break points in a span. It seems that they still need to do some cosine evaluations
along the edges:

Kujik, A. A. M., and Blade, E. H. “Faster Phong Shading via Angular Interpolation,”
Computer Graphics Forum, Vol. 8, pp. 315–324, 1989.

This paper is a study of several efforts at speeding up Phong shading, concentrating
on different interpolation and normalization schemes, rather than changes to the
functional shape of the specularity:

Claussen, Ute. “On Reducing the Phong Shading Method,” Eurographics ’89, W.
Hansmann, F. R. A. Hopgood, and W. Strasser (eds.), pp. 333–344, Elsevier Science
Publishers, 1989.

