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Abstract 
 

The specularity calculation of the Phong shading method is reformulated to 
use the squared length of a difference vector in place of a dot product to 
characterize the closeness of the viewpoint to the specularity.  The new 
formulation is easier to compute, using only a modest numbers of 
multiplications and additions, and is much better behaved numerically.  Due 
to the better numerical properties, the new method also allows much simpler 
approximations to vector normalization.  The reformulation does not 
reproduce the standard cosn Phong specularity shape exactly, but allows a 
range of options in approximating that shape.  This new method is especially 
well suited for fixed-point hardware implementation. 

 
 
 

Dedication 
 

This report is dedicated to Bui Tuong Phong, whose work before his untimely 
death advanced the field enormously.  Dr. Bui Tuong is known to me and 
many others only through his work and through his colleagues from the 
University of Utah graphics group, many of whom I’ve had the pleasure of 
knowing and learning from over the last two decades. 



Lyon, Richard Phong Shading Reformulation… 20 July ’93 

Apple Computer, Inc.  2 

Introduction 
 
The Phong shading method [Bui Tuong73, Bui Tuong75] of generating images of 3D 
surfaces with realistic lighting hilites is a popular and standard approach in both 
software and hardware renderers.  However, it is a computationally expensive 
process, and is often omitted in favor of a simpler method, such as Gouraud 
shading, when speed matters—especially in real-time hardware.   
 
The computational cost comes from the large amount of per-pixel lighting 
calculation that is needed, including one or more square roots to normalize 
interpolated vectors, and an exponentiation (typically a log and an exponential) for 
the specularity calculation.   
 
We show how to formulate a close approximation to the Phong specularity 
calculation, making it easy to compute using only a modest number of 
multiplications and additions, and also making it much less sensitive to errors in the 
length normalization of direction vectors and to quantization error.  In addition, we 
present a simple approximate vector normalization technique, using only 
multiplications and additions, that is compatible with the reformulated shading 
calculation. 
 
 
Background 
 
Bui Tuong Phong’s shading technique introduced two important but expensive 
innovations:  first, rather than interpolate colors across surface patches (as in the 
predecessor Gouraud shading), it interpolates surface normals and evaluates a 
lighting model at each pixel; second, a specular reflection component is added to the 
lighting model to produce hilites.  The resulting image color at a pixel typically 
consists of three components; ambient, diffuse (Lambertian), and specular reflection, 
each of which is a product of a material color, a lighting color, and a geometric 
factor: 
 

Itotal = CaIa + Σi(CdIdsi(N•Li) + CsIdsi(R•Li)n) 
 
in which the sum is over the set of light sources.  Vectors are represented by bold 
capital letters.  Idsi is the color of the ith light source (for both diffuse and specular 
models), and Ia is the color of ambient (non-directional) lighting.  Ca, Cd, and Cs are 
color vectors describing the reflectivity of the material in ambient, diffuse, and 
specular lighting.  N is the surface normal direction vector, Li is a direction vector 
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pointing from the surface to the ith light, and R is the direction vector of the 
viewpoint V reflected off the surface (viewpoint vector V is also commonly referred 
to as eye vector E). The material property that controls the concentration of the 
specular reflection is the “shininess” n.   
 
In the specularity calculation, sometimes RLi•V is used instead of R•Li, where RLi is 
the reflection of the ith light vector off the surface; but that approach requires more 
reflection operations when there are multiple lights.  We take R as the reflection of V 
and omit the subscript i from here on for convenience—much of the calculation will 
still need to be repeated in the case of multiple lights. 
 
Figure 1 shows a generalized shader in block diagram form, for a single light and 
ignoring the ambient term (which is often not used, or is incorporated in simplified 
form as an addition to the diffuse amount).  The vectors used in our discussion are 
illustrated in Figure 2.  The “illumination model” of both of these figures, and much 
of what follows, can be applied also in ray tracing, as well to Gouraud shading and 
flat shading, though these simpler shading approaches are not generally very good 
at handling specularities. 
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Figure 1:  Block diagram of a generalized shader.  The block “specular reflection 
calculator” is of particular interest in this report.  The calculations are repeated and 
summed for each light source.  In Phong shading, the input N and possibly also L 
and V are interpolated across spans of polygons to be shaded.  In Phong shading 

and in ray tracing,  the calculations are repeated for each pixel.  In Gouraud shading, 
the calculations are done at each vertex, and in flat shading at each polygon.  For 

some physical illumination models, the light wavelength interacts with the 
geometric calculations, or more material properties are required, so the shader can 

not be decomposed in quite this way. 
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Figure 2:  Illustration in two dimensions of a typical three-dimensional configuration 
of a surface being rendered, with surface normal N, light vector L, viewpoint vector 
V, reflected viewpoint vector R, angle α, and difference vector D.  The construction 

of the reflected vector R = 2(V•N)N–V is illustrated in terms of the projection 
(V•N)N of the viewpoint vector onto the surface normal vector. 

 
When the lights and viewpoint are at an infinite distance from the object, their 
direction vectors do not vary across a surface patch or span, so only the surface 
normal needs to be interpolated and normalized.  More generally, the lights and 
viewpoint may be “local,” or in the vicinity of the object being rendered, in which 
case their directions will need to be interpolated and normalized as well.  In some 
systems, the viewpoint may be local but the lights at infinity. 
 
The diffuse term, modeled by Lambert’s law N•L, does not depend on the 
viewpoint, but requires surface normals and light vectors of unit length.  A vector 
linearly interpolated between unit-length direction vectors has a length less than 
unity, and is corrected by dividing by the square root of the dot-product with itself.  
The divide and the square root are usually relatively expensive.  The accuracy 
requirements on the normalization are not particularly severe—the final intensity is 
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simply proportional to each vector length, so up to a 1% maximum normalization 
error might be acceptable for the diffuse term.   
 
The same normalization step is used for the vectors in the specular term, where 
normalization errors in N and V both affect R.  But in this term, the dot product R•L 
is raised to the nth power, where n, the material’s “shininess coefficient” is 
sometimes as high as several thousand, resulting in tremendous error magnification.  
In systems that use this formulation directly, the error magnification puts severe 
accuracy requirements on the normalization operation—typically 16 bits of 
precision—which means that it is difficult to use a low-cost approximation.  The 
exponentiation is similarly constrained to be an accurate operation on a 16-bit input. 
 
 
Phong Specularity Reformulation 
 
The specular coefficient (R•L)n may be thought of as the function cosnα of the angle 
α between the light direction L and the reflected viewpoint R.  The key to our 
reformulation is to compute a similar function of α from the difference R–L instead 
of from the dot product, and thereby to avoid the exponentiation and to a large 
extent the error magnification.  This reformulation was developed as a good 
approximation for a fixed-point hardware renderer, but it also provides advantages 
in software, potentially even in floating-point implementations. 
 
The key to the reformulation is the observation that the angle α is approximately 
equal to the length of the difference vector D: 
 

α ≈ D = R–L 
 
Actually, the length of D is 2sin(α/2), which is monotonic up to an angle of 
α = π ≈ 3.14 (180°), where D is 2.  At α = π/2 ≈ 1.57 (90°), D is about 1.41, which 
is not too terrible; the approximation is excellent for smaller angles. 
 
Using D for α, the function cosnα can be approximated in various ways.  
Fortunately, cosnα is an even function, so it can be computed from the squared 
length of D, which is D•D, avoiding the square root inherent in D.  Using α2 = 
D•D, we can write the Taylor series expansion of cosα and find the leading term of 
its nth power: 
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n
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2
!
2
+ 1
4!
!
4
+…( )

n

# 1" n
2
!
2  

 



Lyon, Richard Phong Shading Reformulation… 20 July ’93 

Apple Computer, Inc.  7 

Therefore, a plausible first approximation for (R•L)n is 1–(n/2)D•D.  For better 
approximations, it will be convenient to first define the intermediate value x: 
 

x = (n/2)D•D 
 
We consider “shape functions” f(x) that define the shape of the specular reflection in 
terms of the squared length of the difference vector times half the surface shininess 
coefficient.  Call this first approximation f0(x): 
 

f0(x) = 1 – x 
 
When the difference vector D is zero, the reflected view direction looks directly into 
the light.  In this case, f(0) correctly matches cosnα at 1.0 (assuming normalized 
inputs—we’ll discuss the error sensitivity later).  As the light and viewpoint move 
away from their reflection relationship, x increases in proportion to the surface 
shininess and the squared distance.  Soon, f0(x) becomes negative, which is 
nonsensical.  Therefore, we define f0(x) to be zero for x>1. 
 
Notice that the specularity has an angular size that can be characterized by a 
nominal radius 1/sqrt(n), where x is 1/2.  For large n, cosnα falls to about exp(–1/2) 
= 0.6065, like a Gaussian at one standard deviation out; the approximation f0(x) falls 
to 1/2 at this nominal radius, which is a significant but not gross error. 
 
For a better approximation, we could take more terms of the Taylor series for cosnα, 
but we don’t expect that that approach would give a very good result, knowing how 
ill-behaved Taylor series tend to be.  Instead, we want to assure that f(x) will 
smoothly approach zero for large values of x, in the nature of the bell-shaped cosnα 
function.  Where 1–x crosses zero linearly, we can get a smooth quadratic approach 
to zero by squaring 1–x, but this also narrows the main peak of the shape function.  
We compensate by dividing x by two, to arrive at the following second 
approximation which still matches the Taylor series quadratic term: 
 

f1(x) = (1 – x/2)2 
 
Since squaring is cheap, and squaring the square is not much worse, we are able to 
make a general family of shape functions by repeating the above modification as 
follows: 
 

f2(x) = (1 – x/4)4 
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fk(x) = (1 – x/2k)2k 
 
The general form looks imposing, since it has the exponential 2k in the exponent; but 
it is computed simply as k successive squarings.  And the factor 2k that multiplies x 
is just a shift (in a fixed-point system).  In each case, the function fk(x) should be 
taken as zero for x>2k.  Functions with k of 0 or 1 may be useful, and k=2 provides 
an approximation that is visually indistinguishable from true Phong shading.   
 
These shape functions are plotted as a function of α for n=100 in Figure 3, along with 
cosnα (for this large n value, we don’t need to correct for the error between α and 
the length of D).  Some people think that the standard Phong specularity shape has 
too broad a tail; they might prefer the simpler approximations with k of 0 or 1. 
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Figure 3:  Specularity shapes as a function of angle α, compared to the standard 
Phong shape cosnα, illustrated for n=100. 

 
The approximation to cosnα breaks down for very small n, for two reasons.  First, 
the length of D is significantly less than α for large angles; second, the function 
cosnα depends on n and α separately, not exactly on the product nα2.  In particular, 
cosnα goes to zero at α=π/2, independent of n, rather than at a particular value of 
nα2.  For n=1, f1(x) doesn’t go to zero until α=π, and f2(x) never goes to zero.  For 
n=4, f1(x) goes to zero at α=π/3, and f2(x) goes to zero at α=π/2, which are much more 
reasonable.  These very low n values probably don’t matter in many cases, but if 



Lyon, Richard Phong Shading Reformulation… 20 July ’93 

Apple Computer, Inc.  9 

they do, at least the reformulated specular reflection still falls off from the peak at 
the right quadratic rate. 
 
 
Length Error Sensitivity 
 
Unfortunately, the functions (R•L)n and fk(x) depend not only on the angle α, but 
also on the lengths of the vectors R and L.  For example, suppose L is unit length, 
but R is of length 1–ε.  Then when R aligns with L, such that α is zero, (R•L)n is (1–
ε)n, while fk(x) is about 1–(n/2)ε2, which is much closer to unity.  The relative errors, 
if small enough, are well approximated by nε and (n/2)ε2.  Thus for a relative error 
of 5% at the specularity peak, and n of 1000, the standard formulation requires 
e<0.00005 (1 part in 20,000 normalization accuracy—more than 14 bits), while the 
new formulation allows e<0.01 (only 1 part in 100—fewer than 7 bits).  So we should 
be able to get away with a cheap approximate normalization with up to about a 1% 
residual length error (more or less, depending on the maximum n used and the 
maximum angle interpolated across). 
 
 
Approximate Normalization 
 
A vector N' is normalized to produce N by multiplying by 1/sqrt(N'•N'), so for cost-
effective hardware we need a good approximation to a reciprocal square root.  A 
Taylor series expansion about 1 is a good start, using z to represent N'•N': 
 

g z( ) =
1

z
= 1! 1

2 z !1( ) + 3
8 z !1( )2 +  …

 
 
If the vectors being interpolated are well normalized to unity length at the ends of 
each span, the linearly interpolated vectors will be shorter than unity length; in fact, 
they can be as short as cos(θ/2) if the vectors at the ends of the span are at an angle θ 
from each other.  The length can approach zero only if the vectors are nearly 180° 
apart, which can happen only for a local light or a local viewpoint very close to a 
surface.  With little loss of generality, we can consider θ to be restricted to 90°, in 
which case the squared length is not less than 1/2.   
 
Since x is less than 1 in the usual case, we negate z–1 in the Taylor series to a positive 
error y = 1–z, and consider the following approximations of first and second order: 
 

g1 z( ) = 1+
1
2 1! z( ) = 1+

y
2  
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g2 z( ) = 1+
1
2 1! z( ) + 12 1! z( )2 = 1+

y+y2

2  
 
In the second-order case, we use an ad hoc modification of the second-order Taylor 
series coefficient, overcorrecting for a better overall fit as seen in Figure 4—the 
coefficients are also nicer, being in common and a power of two. 
 
When y is 1/2, the maximum error for interpolating across 90°, the correct answer is 
g(z) = 1.414.  The approximations give g1(z) = 1.25 and g2(z) = 1.375, for errors of just 
under 12% and 3%, respectively.  The former is probably too much error, but the 
latter is probably acceptable—it implies a significant (factor of two) reduction in 
specularity height near the middle of a span for very shiny (n = 1000) surfaces when 
interpolating across large angles (90°).   
 
Figure 4 shows the length of vectors after approximate normalization for the first- 
and second-order approximations, and shows that the second-order approximation 
is good to better than 0.5% for input vector lengths as low as 0.8, corresponding to 
interpolation across more than 60°, which is plenty for surface normals in reasonable 
object models.  The first-order approximation is seen to be reasonable only over a 
more limited range.  Note that the second-order version over-corrects vectors of 
length near 0.9 to a final length of about 1.002, which is a completely negligible error 
for our purposes. 
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Figure 4:  Graph of the length of an approximately normalized vector as a function 
of the length of the original vector, for first order (lower curve) and second-order 

(upper curve) approximations. 
 
 
Gaussian and Exponential Relationships 
 
After reformulating the specular reflection model more as less as described above, 
we noticed a simpler approach based on approximately Gaussian specular reflection 
shapes and on an exponential approximation.  We also observe that a number of 
physical models have been invoked in deriving various related specular reflection 
shapes, including Gaussian, which are mostly well approximated the same way 
[Blinn77].   
 
The key exponential relationship we need is  
 

(1 + x/K)K ≈ exp(x)  for x/K << 1 
 
In addition, we use the definition of a zero-mean Gaussian: 
 

exp(–(1/2)(x/σ)2) 
 
We also need cosnα in terms of α, either using the Taylor series as before, or this 
way using sinα ≈ α: 
 

cosnα = (sqrt(1 – sin2α))n = (1 – sin2α)(n/2) ≈ (1 – α2)(n/2) 
 
For large n and small α, the above is recognized as a Gaussian of standard deviation 
σ = 1/sqrt(n), by applying the exponential approximation: 
 

cosnα ≈ (1 – α2)(n/2) ≈ exp(–(n/2)α2) 
 
Working from the Gaussian back to the exponential form with a different specified 
exponent, one obtains the reformulated shape function, where now K is a more 
general form for the previous 2k: 
 

cosnα ≈ exp(–(n/2)α2) ≈ (1 – (n/2K)α2)K 
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To complete the derivation, α must be approximated by the length of the chord or 
difference vector D, as before.  Of course, for ease of implementation using 
successive squarings, K should still be chosen to be a power of two. 
 
 
The Half-way Vector Approach 
 
Figure 5 illustrates, using a vector diagram similar to that of Figure 2, three 
alternative ways to compute a difference vector D using a half-way vector H defined 
by H = V + L, half way between the light and viewpoint, rather than by using a 
reflected vector R.  
 
In the method of Figure 2, vector D was calculated as D = R–L, or D = (2V•N)N–V–
L.  As a first method in Figure 6, we show a vector D1, which is identical to vector D, 
which may be seen by substituting –H for –V–L in the definition of D to obtain 
difference vector D1 as D1 = (2V•N)N–H.  But now the difference is expressed 
relative to the half-way vector H. 
 
In Figure 5 we have found it convenient to illustrate the calculation of (2V•N)N by 
first doubling vector V to obtain vector 2V, and then projecting it onto N, rather 
than by first projecting and then doubling as in Figure 2; this difference is not 
relevant except to reduce clutter in the center of the vector diagram. 
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Figure 5:  Vector diagram showing three ways to use an un-normalized  

half-way vector H = V+L to compute a difference vector. 
 
As mentioned above, instead of comparing the light vector with the reflected 
viewpoint vector, the same result (in terms of dot product) may be obtained by 
comparing the viewpoint vector with the reflected light vector.  Correspondingly, in 
our reformulation, a difference vector may be generated by subtracting a viewpoint 
vector from a reflected light vector.  This method is not illustrated explicitly, but 
produces the identical vector as the second approach illustrated in Figure 5, which 
computes D2 as D2 = (2L•N)N–H, using the half-way vector H and the projection of 
the doubled light vector 2L onto N.   
 
Vector D2 is not equal to vector D1, but their lengths are equal, so they may be used 
interchangeably—ignoring normalization imperfections.  A third method of 
computing a difference vector D3 that is not equivalent is motivated by the 
observation that 2V and 2L appear in equivalent places in the definitions of 
equivalent vectors, so perhaps V+L would work as well or better.  This reasoning 
leads to the computation of vector D3 as D3 = (H•N)N–H, the difference between 
the half-way vector H and its projection (H•N)N onto N.  We have not yet analyzed 
the extent to which this variation might impact the appearance of a rendered image, 
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as might be expected particularly in the case of grazing angles of reflection, where a 
short H would tend to produce a short D, for an increased reflection; this effect 
could be a feature or a bug. 
 
In the half-way vector approach of Blinn [Blinn 1977], the normalized half-way 
vector H* is used, and H•N is used as the basis of the specular reflection 
computation.  Our D3 method may be viewed as an improvement of Blinn’s method, 
since it entirely avoids the need for a normalization of the half-way vector—we need 
the projection operation instead, but no square root or divide.  The half-way vector 
is in general difficult to normalize accurately, since the length of E+L may be near 
zero, even at a maximal specularity.  If it is desirable to better approximate Blinn’s 
method, it is possible to normalize or approximately normalize H to obtain H*, and 
to then compute D as a difference either between H* and N or between H* and its 
projection (H*•N)N.  These additional methods are not illustrated.  There may be a 
variety of other ways to compute a difference vector whose length is useful as an 
indicator of the extent to which the configuration being rendered deviates from the 
maximal specular reflection.   
 
 
Pixel Shading Hardware Datapaths 
 
Figure 6 shows a block diagram of a portion of a hypothetical hardware 
arrangement that uses the first version of our reformulation—i.e., the version with 
the reflected viewpoint vector.  Linear interpolation (LIRP) and approximate 
normalization are shown only for the surface normal, but could also be used for the 
light and viewpoint vectors.  We show only basic data paths, and not the logic that 
controls iterations over multiple lights—it’s clear from the diagram which parts 
depend on L and would need to be repeated.   
 
The dot product and exponentiation calculations of the standard Phong renderer 
have been replaced by the more easily implemented reformulation as shown.  The 
squared magnitude of the difference vector D, the dot product of D with itself, is 
multiplied by shininess n to generate the intermediate scalar x.  We show a divide 
by two here, based on our chosen definition of x, but since the next block divides x 
further, the shifts would probably be combined into one place—so don’t take the 
hardware block diagram too literally.  Finally, a shape function fk(x) is performed on 
x to simulate the drop-off of specular reflection with distance from the specularity.  
Internally, the shape function is just a shift, a subtraction, and zero or more cascaded 
squaring operations.  Unlike typical implementations using exponentiation and 
exact normalization, this one uses no tables and no iterations. 
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Figure 6:  Block diagram of Phong shading diffuse reflection and  
specular reflection calculators, showing surface normal interpolation  

and approximate normalization. 
 
Expanding on Figure 6, a more detailed hardware data path diagram is shown in 
Figure 7, annotated with plausible numbers of bits of fixed-point data representation 
at each point, specified as n.m for n+m bits with n bits of left of the point and m to 
the right, or Sn.m for signed values totaling 1+n+m bits.  The proposed bit counts 
have not been simulated, and may have been too aggressively reduced in some 
cases.  An extra high bit may be needed at some locations for edge-condition values 
(e.g. exactly 1.0).  Additional tests may also be needed; for example, the “backside” 
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test N•L < 0 is usually applied to zero the diffuse component, but would introduce a 
small discontinuity if used to zero the specular component. 

 
Figure 7 (parts a–d) is a detailed diagram of the specular reflection calculator in 
terms of elementary arithmetic operations, using the method of Figure 2 and the 
structure of Figure 6.  Figure 7a shows the calculation of the interpolated and 
approximately normalized normal vector N.  Figure 7b shows the Reflect operation 
that calculates the reflected viewpoint vector R from N and V.  Figure 7c shows the 
calculation of the difference vector D, its squared magnitude, and the intermediate 
scalar value x (actually 2x in this case).  Figure 7d shows the calculation of the final 
specular amount as a shape function of x.  The calculation of diffuse amount N•L is 
not shown.  Triple lines represent X, Y, Z datapaths, and are not meant to imply a 
particular choice of parallelism versus serialization of the data and calculations. 
 
In Figure 7a, surface normal vectors N0 and N1 representing two corners or edges of 
a surface patch to be rendered are provided as input to a linear interpolator, which 
produces the linear combination N' as determined by the interpolation factor “a”, 
which is applied as a weighting factor on N1.  A “1–” block subtracts its input from 
unity to produce “1–a” as a weight for N0.  An equivalent linear interpolation 
hardware structure might merge the subtraction and two multipliers into a single 
structure.  An approximate normalization operation on N' follows.  The dot product 
N'•N', representing the squared length of N', is provided as the input “z” to the 
g2(z) approximation of the reciprocal square root, as discussed above.  The result is 
used to scale N', to produce an approximately normalized normal vector N.   
 
With 10-bit fractional parts on all the direction vectors, length errors and angle 
errors will correspond to less than 0.001 radian, except when interpolating across 
large angles, in which case the approximation will introduce more error.  The error 
of 0.001 radian is small compared to the smallest specularity angular radius, unless n 
is allowed to approach a million, so it should not be a big contributor to the final 
error. 
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Figure 7a:  Interpolation and Normalization 
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Figure 7b shows the Reflect operation.  Normal vector N and viewpoint vector V are 
dotted to produce N•V, which is then doubled and multiplied by N to produce the 
projection (2N•V)N.  Finally, subtractors compute the reflected viewpoint vector R. 
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Figure 7b: Reflection of Viewpoint about Normal 
 
 



Lyon, Richard Phong Shading Reformulation… 20 July ’93 

Apple Computer, Inc.  19 

Figure 7c shows the computation of D as the vector difference R–L, followed by the 
dot product of D with itself, D•D, which is the squared length of D.  Finally, 
intermediate value 2x is calculated by multiplying by the material shininess 
parameter n.  A rather large multiplier is needed for this operation, since n can be 
large or small (1 to 8000 in the example) and it scales the wide dynamic range of 
D•D into an even wider range number 2x, of which the fractional part represents 
the smaller range over which the shape function is nonzero. 
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Figure 7c:  Difference Vector and x calculation. 
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In Figure 7d, the intermediate value 2x is arithmetically to the right by 3 places, 
producing x/4.  The “1–” block computes 1–x/4.  Two multipliers are connected as 
successive squaring circuits to compute the fourth power (1–x/4)4.  A comparison of 
x/4 to unity controls the output multiplexor to select either (1–x/4)4 if x/4 is less 
than unity, or zero otherwise, to produce the specular amount.  
 
 

shift right
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x/4

(1–x/4)

1–x/4

Specular Amount

2x

0

! 1 ?

1–

two
squaring
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Figure 7d:  Shape function calculation for k=2. 
 
 
The particular structure described in Figure 7 is based on the choice of shape 
function characterized by k=2.  A shape function characterized by a different value 
of k can be implemented simply by changing the shifter to shift by k+1 places and 
changing the number of successive squaring multipliers to be k, with no further 
changes. 
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Hardware Rearrangements for Bit Reductions 
 
The wide dynamic range of the shininess coefficient n is itself a problem when 
designing an efficient hardware renderer, adding ten or more bits to the accuracy 
requirements on the D•D calculation.  Since n represents a specularity with angular 
radius of sqrt(1/n) radians, we propose to substitute a modified shininess parameter 
m = sqrt(n), which specifies a specularity of angular radius 1/m.  If m is an integer 
from 1 to 63, for example, it covers the same range of shininess as n from 1 to 4000, 
though in coarser steps.  The calculation x = (n/2)D•D is still easy, multiplying the 
three components of D by m, rather than the dot product by n:  x = (1/2)mD•mD . 
 
While this approach appears to be more complex, using three multiplications in 
place of one, it can have significant beneficial impact on fixed-point hardware due to 
quantization issues. 
 
Figure 8 shows a detailed diagram of an alternative implementation of the portion of 
a specular reflection calculator following the computation of the difference vector D, 
but using m instead of n.  The computation proceeds as follows:  difference vector D 
is rectified (absolute value of each component) for reasons that will become apparent 
shortly; the rectified vector D* is multiplied by the parameter m to produce vector 
mD*; the dot product operator computes (m|D|)2, corresponding to x/4.  The shape 
function is as in Figure 7d, except that we use k=1 in this example and the 
comparator is augmented with more inputs to be compared to unity. 
 
As described above, the implementation of Figure 8 will produce approximately the 
same result as the one of Figure 7, with the absolute value operators and the 
augmentations to the comparator having no effect.  The scheme of Figure 8 is 
apparently more costly than that of Figure 7, since it uses two more multipliers to 
multiply three vector components by m than to multiply a scalar by n.  But this 
scheme may be preferred in a hardware implementation because much smaller 
multipliers can be used, due to numerical advantages of this rearrangement.  In 
particular, the dot product operator needs to accept as input only the bits 
representing the fractional parts of the vector components, if the components are 
positive as assured by the absolute value operators, and if the integer parts are 
detected by the augmented comparator.  Many multiplier bits are saved; for 
example, the six 7x11 and 9x9 multipliers are likely to be smaller and faster than the 
three 12x12 and one 14x22 required for similar accuracy in the arrangement of 
Figure 7. 
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Figure 8:  Hardware portion modified to use the proposed  
“root-shininess” parameter m and generally fewer bits. 
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Simulation Results 
 
In order to test the appearance of shiny objects rendered using the proposed new 
specularity formulations, we have hacked together a simple test program in 
MATLAB (a “matrix laboratory” interactive environment available on most 
computers, including Macintosh).  The few pages of code involved are shown in the 
appendix so that details may be verified and duplicated. 
 
The simulation shades only unit-radius spheres, which have the nice property that 
the surface normal at any point is equal to the location of the point, with the sphere 
center as origin.  The form of the figure is modeled after figures comparing Phong 
shading with the Blinn H•N variant in The Renderman Companion [Upstill90]. 
 
To further simplify the test, light and viewpoint vectors are constant (at infinity, as 
opposed to “local”), and colors are monochrome.  Since polygons and spans are not 
used, no normal vector interpolation is done, and the approximate normalization 
performance is therefore not tested—only the specularity shape is tested.  By fixing 
the viewpoint at (0,0,1), we implicitly project object points [x,y,z] to image points 
[x,y], so that it is easy to go from the image point to the object point and normal 
vector as [x,y,sqrt(1–x2–y2)].  Multiple spheres are rendered as if each is at the origin, 
and their images are overlapped by offsetting image plane indices.  Thus, in this 
simple test program we have no explicit representation of objects, spans, colors, or 
depths, and no explicit computation of projection, hidden surface removal, etc.  Two 
light source locations and some other parameters are specified as constants in the 
MATLAB code script. The function file specfuns.m returns of a vector of specular 
amounts determined by each of the methods being compared, saving lots of 
duplicated overhead that would result by rendering separately by each method.  
Within specfuns.m, we attempt to give the shininess coefficient n a consistent 
interpretation in terms of the quadratic rate of falloff of the specularity from its peak 
(i.e., the first nontrivial Taylor coefficient as a function of angle α or approximate 
equivalent); this interpretation of specularity “width” is much simpler than Blinn's β 
definition [Blinn77], but may be less meaningful for very small n. 
 
The code in the appendix produces the result presented in Figure 9, which shows 
dark (low diffuse reflectivity) spheres lit by two point light sources, one to the right, 
high, and in back of the spheres, and the other to the right, low, and in front (i.e. 
light direction vectors parallel to [1,1,-1] and [1,-1,1]).  Five different shininess values 
are tested, and twelve different specularity formulations, as noted in the figure.  The 
leftmost column, with n=1, is not a particularly useful case, but shows up some of 
the bad edge effects of some of the formulations in this limiting case.  For example, 
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the original Phong method specularity shape goes abruptly to zero for n=1 but not 
for n>1; the Blinn (H•N)4n method avoids this behavior at approximately the same 
specularity width, since it uses a four times greater exponent for a given width. 
 
The first thing to notice is that for n>4 or so, all the methods work OK, with the 
exception of row 10, which loses the glancing hilite.  This defect is due to the vector 
D = Hg2(z)–N never getting very short since Hg2(z) is not well normalized (even in 
this case, where approximate normalization g2(z) is used, since H can start out way 
too short); that's why we suggest the projection of H onto N—so that the distance 
goes to zero when the angle goes to zero, even if the length is off.  Note that in the 
code we define H = (L+V)/2, so that’s its length is always unity or less. 
 
Next, getting to the detail of specularity shape relative to our k parameter, notice 
that the k=2 shape (row 4) is essentially indistinguishable from the cosnα shape, 
which is quite “fuzzy,” for large enough n.  The k=1 shape (row 3), which is a little 
easier to compute and behaves a little better for small n, actually looks “better” 
(according to the author and certain other individuals who shall remain anonymous 
for their own protection).  This result holds for both the Phong-like and Blinn-like 
versions (rows 8 and 9).  The k=0 shape (row 2), on the other hand, drops too 
abruptly to look good; in fact, at n=1, it looks just as bad as the original Phong 
version, which it approximates excellently at that point. 
 
The next thing to notice is the different shape of the glancing hilite between the 
Phong-like methods (1–4) and the Blinn-like methods (5–12), due to the different 
way that the angle between L and R evolves compared to that between H and N, in 
three dimensions.  This difference is explicitly compared in the figure on page 318 of 
The Renderman Companion [Upstill90], but is difficult to appreciate there due to the 
non-comparable parameter values and different amounts of saturation in that figure.  
Row 6 shows an excellent approximation to Blinn’s method, but requiring a 
normalization of H. 
 
The H•N specularity function is not really what Blinn proposed, but is only the 
“D1” (distribution of surface normals) factor from his more complex model.  This 
function is widely used by itself, however, and in many cases is actually referred to 
as the Phong specularity model, as explained by Hall [Hall89, p. 77].  Blinn also 
proposes other shapes “D2” and “D3” which are functions of the same angle, lead to 
similar appearance, and would lead to identical approximations under our proposed 
reformulation.  The “D2” or “Torrance and Sparrow” function (row 11), being a 
Gaussian, would be identical to “D1” for large n and more like our reformulation for 
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small n.  The “D3” or “Trowbridge and Reitz” function (row 12) is even more 
“fuzzy” than the cosnα and Gaussian shapes, and never drops to zero. 
 
 

1.  Phong

2.  D = R – L
       k = 0

3.  D = R – L
       k = 1

4.  D = R – L
       k = 2

5.  Blinn D1

.  
 n = 1 n = 4 n = 16 n = 64 n = 256 

 
Figure  9:  Shiny black balls as rendered by the MATLAB test program,  
with five shininess values n in each row, and a row for each of twelve  

techniques (continued on next page with one row duplicated). 
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8.  D = Hg2(z) – projection

       k = 2

9.  D = Hg2(z) – projection

       k = 1

5.  Blinn D1

6.  D = H* – N
       k = 2

7.  D = H – projection
       k = 2

10.  D = Hg2(z) – N  

         k = 2

11.  Torrance & Sparrow 
        (Blinn D2, Gaussian)

12.  Trowbridge & Reitz
        (Blinn D3)

.  
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Conclusions 
 
The reformulation of Phong shading in terms of a distance instead of a dot product 
leads to a simpler hardware implementation with less numerical difficulty, because 
the length of a chord between two vectors is a simpler and more sensitive way to 
measure their alignment than a dot product is.  Besides leading to simpler hardware, 
improved or faster software implementations may also be enabled by this 
reformulation. 
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Appendix — MATLAB™ Simulation Code 
 
-----------file specular.m----------- 
 
% test of specular amount calculation 
 
m = 64; % 64 steps from 0 to 1 radius of sphere. 
ns = [1 4 16 64 256]; % shininess values to show 
specfs = ns.^0.25; % specular amounts 1 to 4 
specfs = 400/max(specfs)*specfs % max specular amount to 400 
diff = 35; %diffuse factor 
amb = 0; %ambient amount 
bg = 255; %bright  background 
 
lv1 = [1 1 -1]; % light high in back right 
lv2 = [1 -1 1]; % light low in front right 
lv1 = lv1*1/sqrt(sum(lv1.*lv1)); % first light vector 
lv2 = lv2*1/sqrt(sum(lv2.*lv2)); % second light vector 
vv = [0 0 1]; % viewpoint vector 
mmax = m*length(ns) 
 
ny = length(specfuns([0 0 1],lv1,vv,1,0)); % number of functions to test 
dj = (0:ny-1)*(2*m-floor(m/2)); % y displacements by 1.5 radii 
 
clear pic; 
pic = bg*ones((1+length(ns))*m+1,2*m+1+max(dj)); % image buffer, background 
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for i = -m:1:mmax; % x iteration 
  fprintf('%g ',i); 
  ii = m+1+i; 
  xx = (0.5+i)/m; 
  for j = -m:1:m % y iteration 
    jj = m+1+j; 
    y = (0.5+j)/m; 
    for ni = 1:length(ns); % search through spheres 
      n = ns(ni); % material shininess n for this sphere 
      specf = specfs(ni); % specularity factor for this sphere 
      x = xx - (ni-1); % unit radius offset spheres from left to right 
      z = (1 - x*x - y*y); 
      if z >= 0;  
        z = sqrt(z); 
        break; % jump out when first sphere is found 
      end; 
    end 
    totals = amb*ones(1,ny); 
    if z >= 0; % case where sphere was found 
      nv = [x y z]; % x,y,z are now coordinates of normal to (hemi)sphere 
      dif1 = lv1*nv'; if dif1 > 0; totals = totals + diff*dif1; end; 
      dif2 = lv2*nv'; if dif2 > 0; totals = totals + diff*dif2; end; 
      totals=totals+specf*(specfuns(nv,lv1,vv,n,ny)+specfuns(nv,lv2,vv,n,ny)); 
      pic(ii,jj+dj) = totals; 
    end; 
  end; 
end; 
writeimagefile(pic,'shinyballs'); 
 
 
-----------file specfuns.m----------- 
 
function amounts = specfuns(nv,lv,vv,n,len) 
%function amounts = specfuns(nv,lv,vv,n,len) -- multiple versions 
 
amounts = zeros(1,len); % (maybe) allocate place for results 
count = 0; % number of specularity models done so far 
 
rv = 2*nv*(vv*nv')-vv; % reflected view vector 
hv = (lv+vv)/2;  
hl = hv*hv'; % hv length^2 
dl = 1-hl; % length error z 
hv1 = (1+0.5*(dl+dl*dl))*hv; % approx. normalized halfway vector 
hv2 = 1/sqrt(hl)*hv; % normalized halfway vector 
n4 = 4*n; % "n" for halfway vector method 
 
% 1. Phong method 
dot = rv*lv'; 
if dot > 0;  
  amount = dot^n;  
else;  
  amount = 0; 
end; 
count = count+1; amounts(count) = amount; 
 
% Lyon main method, several k values for this D vector and x value 
dv = lv - rv; % difference vector 
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xs = (dv*dv')*n/2; 
 
% 2. Lyon k=0 
if xs > 1;  
  amount = 0;  
else;  
  amount = (1 - xs); 
end; 
count = count+1; amounts(count) = amount; 
 
% 3. Lyon k=1 
if xs > 2;  
  amount = 0;  
else;  
  amount = (1 - xs/2); 
  amount = amount*amount; % -- square k=1 times 
end; 
count = count+1; amounts(count) = amount; 
 
% 4. Lyon k=2 
if xs > 4;  
  amount = 0;  
else;  
  amount = (1 - xs/4); 
  amount = amount*amount; 
  amount = amount*amount; % -- square k=2 times 
end; 
count = count+1; amounts(count) = amount; 
 
% use n4 (4*n) in all the h-vector methods 
 
% 5. Blinn method 
dot = hv2*nv'; 
if dot > 0;  
  amount = dot^n4;  
else;  
  amount = 0; 
end; 
count = count+1; amounts(count) = amount; 
 
% 6. Lyon/Blinn halfway method, normalized hv2, k=2 
dv = hv2 - nv; % difference vector 
xs = (dv*dv')*n4/2; 
if xs > 4;  
  amount = 0;  
else;  
  amount = (1 - xs/4); 
  amount = amount*amount; 
  amount = amount*amount; % -- square k=2 times 
end; 
count = count+1; amounts(count) = amount; 
 
% 7. Lyon halfway method, no norm of h, k=2 
dv = hv - nv*(hv*nv'); % difference vector to projection 
xs = (dv*dv')*n4/2; 
if xs > 4;  
  amount = 0;  
else;  
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  amount = (1 - xs/4); 
  amount = amount*amount; 
  amount = amount*amount; % -- square k=2 times 
end; 
count = count+1; amounts(count) = amount; 
 
% 8. Lyon halfway method 2, projecting hv1, k=2 
dv = hv1 - nv*(hv1*nv'); % difference vector 
xs = (dv*dv')*n4/2; 
if xs > 4;  
  amount = 0;  
else;  
  amount = (1 - xs/4); 
  amount = amount*amount; 
  amount = amount*amount; % -- square k=2 times 
end; 
count = count+1; amounts(count) = amount; 
 
% 9. Lyon halfway method 2, projecting hv1, k=1 
% same xs from above 
if xs > 2;  
  amount = 0;  
else;  
  amount = (1 - xs/2); 
  amount = amount*amount; % -- square k=1 times 
end; 
count = count+1; amounts(count) = amount; 
 
% 10. Lyon halfway method 3, hv1 no projection, k=2 
dv = hv1 - nv; % difference vector --  
xs = (dv*dv')*n4/2; 
if xs > 4;  
  amount = 0;  
else;  
  amount = (1 - xs/4); 
  amount = amount*amount; 
  amount = amount*amount; % -- square k=2 times 
end; 
count = count+1; amounts(count) = amount; 
 
% 11. Blinn method D2 (Torrance and Sparrow) 
% using some algebra and angular standard dev. of 1/sqrt(n4) 
%dot = sum(hv2.*nv); 
alpha = acos(dot); 
amount = exp(-(n4/2)*alpha*alpha); 
count = count+1; amounts(count) = amount; 
 
% 12. Blinn method D3 (Trowbridge and Reitz) 
% using some algebra and n in place of (1/c2^2 - 1) 
%dot = sum(hv2.*nv); 
if dot > 0;  
  amount = (1/(1+(1-dot*dot)*n))^2;  
else;  
  amount = (1/(1+n))^2; % as low as it gets! 
end; 
end; 
count = count+1; amounts(count) = amount; 
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