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Introduction

Measurements of basilar membrane motion show that the cochlea has a strong
compressive nonlinearity over a wide range of sound intensities, even down to low
intensities where the system might be expected to be linear.  Many models of cochlear
hydrodynamics and micro-mechanics ignore this strong nonlinearity in order to be able to
apply linear systems concepts, sometimes resulting in inappropriate interpretations of
cochlear function.  We propose a modeling approach based on explicitly recognizing the
purpose of the strong nonlinearity as an automatic gain control (AGC) that serves to map
a huge dynamic range of physical stimuli into the limited dynamic range of nerve firings.

We discuss two aspects of AGC in cochlear function.  First, we cover possible
AGC mechanisms and mathematical modeling techniques.  These involve active outer
hair cells whose properties are controlled by the efferent system, resulting in variable-
gain wave propagation in the cochlea.

Second, we consider the implications of AGC-based modeling on two controversial
issues in the field of cochlear function and modeling:  sharpness of neural and
mechanical tuning, and two-tone suppression.  The single most important implication is
that the linearized transfer function of the cochlea at any particular sound intensity is
always much broader than an iso-response tuning curve; this fact depends very little on
the other modeling details.  More detailed features of iso-response tuning curve shapes
(such as a notch between the tip and the tail) may depend on details of the AGC system
more than on details of the transfer functions.

The physiology of medial olivocochlear efferents as mediators of a wide-dynamic-
range spatially coupled binaural AGC system is discussed briefly.  We propose using
contralateral suppressor tones to directly assess the gain reduction effect of the efferents.

Finally, we summarize our view of cochlear function involving variable negative
damping wave mechanics resulting in unsharp pseudoresonant transfer functions.

Background

By AGC we mean a mechanism for varying the sensitivity or gain of a system
based on the signal level at the output of the system, so as to reduce the dynamic range
of the output relative to the input.  A single-input single-output system with AGC is
sometimes referred to as a compressor.  An AGC generally has a “gain-control loop” with
a lowpass “loop filter”, so that the system gain varies slowly, rather than instantaneously.
An extreme form of AGC attempts to keep the output level constant, as in an AM radio
receiver—we do not interpret the term AGC as implying this extreme.  An AGC may
either vary a “pure gain” or vary some parameter that effects an approximate gain
variation coupled with other changes, such as the change of tuning sharpness in the
cochlea.

Evidence for a variable-gain mechanism in cochlear function was clear in the
pioneering work of Rose et al. (1971).  Their data suggest “the existence of a cochlear
sensitivity control mechanism which may, but perhaps need not be, mechanical in
nature.”  Subsequent experiments to measure the mechanics of basilar membrane motion
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directly bear out the notion that much of the sensitivity variation occurs in the
mechanical gain; the work of Robles et al. (1986) shows this effect most clearly, even
below 20 dB SPL.

An early model of gain control in cochlear mechanics was proposed by Kim et al.
(1973), using an instantaneously-varying damping element.  This approach works fairly
well for modeling many effects, and is appealing for its simplicity; it results in response
characteristics similar to bandpass-nonlinearity (BPNL) models, without requiring a
second filter.

In his more recent work, Kim (1984) proposes “biomechanical gain control”
mediated by the efferent large medial olivocochlear neurons that innervate the outer hair
cells.  He provides a detailed review of anatomical and physiological evidence for his
hypotheses concerning the roles of the hair-cell and nerve populations.  This paper may
be taken as the basis of our current views on cochlear mechanics and the need for an
AGC that goes beyond the effects of the instantaneous nonlinearity.

Gain-Control Mechanisms and Models

There is plenty of evidence that the relationship between mechanical motion at the
oval window and mechanical motion of the basilar membrane is nonlinear over a wide
range of signal levels, with apparent gain changes in excess of a factor of 100 (40 dB) for
sine waves near CF.  Apparently, an active amplification of weak traveling waves
gradually changes to an attenuation of strong traveling waves as the input level is
increased.  The coupling of the mechanical wave propagation system to the active
electro-mechano-chemical system of the outer hair cells is generally presumed to provide
the mechanism for the variable gain, though details remain to be worked out.  Other
mechanisms may also provide gain variation, as in the stapedial reflex changing the gain
of the middle ear, and depletion of neurotransmitters changing the transduction gain of
the inner hair cells.  Mechanisms at all levels of the sensory nervous system cooperate to
map a wide range of real-world signals into more-or-less “invariant” neural
representations, but in this paper we focus only on the gain variations that occur in the
mechanical propagation of waves in the cochlea.

Wave propagation in the cochlea can be described by a relationship between
complex wavenumber, place, and frequency, when the system is behaving linearly.
Nonlinear and adaptive effects can be included in the wavenumber relations for a
linearized approximation that applies to a particular state of the parameters (e.g. a
particular gain vs. frequency setting that is the result of a particular steady-state
stimulus).  This type of analysis is easiest if there are no instantaneous nonlinearities, so
that the system is short-time linear.  The complex wavenumber encodes the spatially
varying wavelength as well as the varying energy gain or loss seen by the traveling wave.
A varying negative imaginary part of the wavenumber yields a varying-height gain peak
in the overall “pseudoresonant” transfer function from the input to any chosen place.
Varying the peak gain by changing the wavenumber will inherently vary the shape of the
transfer function as well, though the shape and position of the peak may change only
slightly compared to the large peak height variations.

Physically-based models of the cochlear mechanics generally involve expressions
for the force exerted on the fluid by the cochlear partition (basilar membrane),
sometimes in the form of a complex impedance.  The force may include terms for
membrane stiffness, tension, mass, and losses.  A loss term that exerts a force
proportional to membrane velocity may model viscous loss in a boundary layer at the
membrane, at least approximately.  Varying the magnitude of the loss term, and in
particular letting it be negative, is typically the way to include a variable gain to model
active and adaptive outer hair cells.  Terms other than the loss may also be used to
provide an active gain, as in Mountain’s (1983) “active-stiffness” model.

Since frequencies above CF need to be attenuated, it is important that the loss
term change from negative to positive near CF.  If a pure negative damping (or negative
viscosity) term is used, another loss mechanism must be introduced to attenuate high
frequencies.  Lyon and Mead (1988) have proposed a hypothetical force proportional to
the rate of change of longitudinal curvature of the partition, which provides a loss that
rises steeply with frequency or wavenumber and eventually overwhelms the gain from the
negative viscosity term.  Mountain’s active-stiffness  model, on the other hand, uses a
first-order lowpass function in converting displacement to force, so that for low
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frequencies it is a stiffness, and for frequencies above its corner it provides nearly ninety
degrees of phase shift to convert the force to an active gain; the magnitude of the active
gain declines with frequency, so that a fixed passive loss term eventually dominates at
high frequencies.  Whether either of these models accurately describes the physics of the
cochlear partition with active outer hair cells is not yet clear, but both seem to be at
least qualitatively reasonable.

In modeling cochlear hydrodynamics with an active gain mechanism, the nature of
the nonlinear relationship between signal level and gain is still a huge open question.
Modeling both the static and dynamic aspects of the gain adaptation can be quite
challenging, and there is often not enough experimental data to support a choice of
model parameters.  In many cases, modelers elect to forego the complexity of a dynamic
gain-control loop, and settle for an instantaneous compressive nonlinearity in the active
gain mechanism.  This leaves the efferent system without a functional role in the model,
which does not seem reasonable.  An understanding of cochlear function will almost
certainly require attention to both types of nonlinear compression.

Implications for Sharpness and Suppression

The single most important implication of AGC in the cochlea is the difference in
sharpness between (sharp) iso-response tuning curves and (unsharp) iso-intensity response
curves or equivalent linearized transfer functions.  This difference is clear in much of the
experimental data in the field of hearing, whether measured in cochlear mechanics or in
nerve responses.  However, this difference in sharpness has not generally been interpreted
as the simple result of an AGC, and indeed many modelers still make the mistake of
trying to match model transfer functions to iso-response data.

Mechanical data of Robles et al. (1986) from the Mössbauer technique clearly
indicate the effect of nonlinear amplitude compression on tuning curve sharpness.  The
BM input-output level functions of their Figure 1 emphasize the amplitude compression
for frequencies near CF, rather than tuning.  Our Figure 1 shows the same data as two
types of tuning curves.  Notice that the iso-velocity curve is considerably sharper, by any
measure, than even the sharpest low-level transfer function, and much sharper than the
higher-level transfer functions that are in effect over much of the range of measurement.
We have shown the same effect in simulation of nonresonant models of cochlear
mechanics with adaptive negative damping as the AGC (Lyon and Mead 1988).

Iso-response curves have been the most popular way to characterize tuning
sharpness for many years.  Because iso-response measurements require input levels
changing over many orders of magnitude, gain control mechanisms are pushed to their
extremes.  For frequencies off CF, the input level must be raised to compensate for the
falling transfer function gain, and raised more to counteract the gain reduction caused by
raising the input level; hence, the skirts are pushed up sharply.  Very near the tip,
however, the system may in some cases operate below the level that starts to cause a
gain reduction.  Then within a few dB of the tip, the shapes should agree fairly closely.
Indeed, Evans (1977) reported good agreement in the shapes of iso-rate tuning curves and
revcor-derived transfer functions, but only within 10 dB of the tips and only for the lowest
stimulus levels.  Some modelers have accepted his data as evidence that these two types
of curves should agree, but this interpretation is especially suspect in the light of clearly-
established input-output nonlinearities.

In addition to single-tone data, Robles et al. (1986) present input-output relations in
the presence of a second (suppressor) tone above CF.  The tone above CF does not cause
much response itself, but reduces the gain to tones near CF by more than 10 dB.  When
the suppressor is significantly more intense than the probe tone, it determines the gain of
the system, resulting in a linear input-output relationship to the weaker probe tone in a
region where the system was nonlinear when the probe tone was presented alone.  These
suppression effects are exactly as would be expected from an AGC-based model.

For suppressor tones below CF, two-tone suppression is still very important
(mechanical data are not yet published on this, but Ruggero says it's true).  Models with
instantaneously-varying damping elements do not reproduce this effect, but models with
AGC can, under appropriate conditions.  In order for this effect to occur, it is necessary
that the gain-control feedback from places responsive to the lower frequency also serve to
reduce the gain at more basal places, which are sensitive to the higher frequency.  We
have referred to this cross-place or cross-channel inhibition as “coupled AGC” (Lyon
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1982).  In the wave propagation model, coupling from a high-frequency place to a low-
frequency place is inherent, since waves must travel through the former to the latter.
Coupling in the other direction must be provided by having the gain-control feedback
signals connect to places more basal than the places whose output they are responsive to.
This same cross-coupling toward the base results in significant steepening of the low-side
skirt of the iso-response curves, and may contribute the notch below CF that is
sometimes modeled as a micro-mechanical antiresonance.

Models with per-channel uncoupled AGC mechanisms will not do at all well in
reproducing sharp tuning curves or two-tone suppression; a “lateral” gain reduction is
crucial in modeling these effects.

The data in Figure 1 are not as complete as we would like, and our approximated
curves are subject to significant error.  Better measurements from the laser Doppler
velocimeter technique will soon be available to resolve remaining uncertainties.  In
particular, by using both transient (click) and steady-state (tone and noise) stimuli, it
should be possible to separate out the compressive effect due to instantaneous
nonlinearities from that due to an efferent-mediated gain-control loop.  It should also be
possible to measure the small-signal gain reduction in one cochlea due to a suppressor
presented contralaterally, presuming there is such an effect.

Active outer hair cells have often been invoked to explain tuning sharpness in
excess of that implied by linearized passive models of cochlear mechanics.  From the
above discussion we hope to make it clear that active gain is not sufficient to produce
realistic tuning curves—adaptive compressive control of the gain is required in addition.
Both sharp pure-tone tuning and two-tone suppression must be the result of nonlinear
compression in cochlear mechanics, whether that compression results from instantaneous
nonlinear elements or efferent feedback or both.

When an AGC-based modeling approach is used, sharp enough iso-response curves
can be obtained without postulating a resonance based on a large basilar membrane
mass; the iso-velocity data of Robles et al. (1986) is reasonably well matched using a
two-dimensional wave analysis and zero mass (Lyon and Mead 1988).  Contrast this
approach to the use of long-wave one-dimensional analysis with a large membrane mass,
which has been popular because the transfer functions are sharp enough to match iso-
response data directly, ignoring nonlinearities.

Physiology of Cochlear AGC

Liberman (1986) has reported that efferent fibers in the cochlear nerve are
typically almost as sharply tuned as afferents, but some are tuned for ipsilateral tones and
some are tuned for contralateral tones.  In addition, these fibers often have a dynamic
range between threshold and saturation of 70 dB or more.  He also found that these
efferent fibers innervate several outer hair cells near the place corresponding to their CF.
All of these observations are exactly what would be expected for the feedback path that
controls the mechanical gain of the cochlea, presuming that the outer hair cells provide a
controllable negative damping.  Let us consider these observations one at a time.

1. The relatively small number of efferent fibers probably carry amplitude
information aggregated from groups of the more numerous afferent fibers, thereby causing
a slight smearing of the tuning curves.

2. The gains of the two cochleas are probably coupled, so the inter-aural intensity
differences are not compressed as much as average intensities, to facilitate using such
cues for localization.  Such coupling would imply tuning to sounds in either ear, whether
via separate units or binaurally-sensitive units.

3. The range over which the firing rates of the efferent fibers should be non-
saturating should be about the same as the range of intensities for which the efferent-
mediated compressive nonlinearity is active.  This scheme is much more economical of
fibers than the multiple levels of thresholds of quickly-saturating units often seen in the
afferent system.

4. Fibers that inhibit the gain only very near the region of the CF of the
corresponding afferents (whose activity is being used to control the gain) would yield a
minimum of spatial coupling.  A more broadly-coupled AGC is probably preferred, so that
local spectral contrasts will not be compressed so much.  Coupling the efferent to places
more basal than the corresponding afferents will also give more control of the gain, since
signals being detected travel through that region.  Coupling toward the base also gives
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suppression of tones at CF by lower frequencies, and steepens the low-side skirt of tuning
curves, perhaps even adding a “notch” below CF.  The observed spatial spread of up to
nearly an octave in distance seems reasonable.

Measurements of cochlear mechanical response in the presence of a contralateral
suppressor tone would be a good way to directly assess efferent-mediated gain control.
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A View of Cochlear Function

Building on the AGC-based modeling approach, we have assembled a view of
cochlear function that we believe is reasonably self-consistent and in agreement with
much of the experimental data in the field.  Many of the pieces of this view are not
generally accepted, and indeed do not appear to be correct within modeling paradigms
without AGC and too heavily dependent of linear analysis.  In particular, the following
items characterize our currents views:

1. Near CF, the cochlea operates mainly in the short-wave region, rather than in
the long-wave region.  The long-wave region does not contribute significantly to neural
response, except perhaps in the low-frequency tails.

2. The mass of the cochlear partition is negligible, except perhaps near the base,
and the tension of the cochlear partition is also negligible.  Membrane stiffness and fluid
mass interact to form a dispersive wave propagation system without resonance.

3. The hydrodynamic system of the cochlea is not highly tuned (in the sense of
being highly frequency selective or resonant), and the best frequency for a place is quite
level dependent.

4. Sharp iso-response tuning curves are the result of an AGC operating in
conjunction with a broadly tuned hydrodynamic system—no “second filter” or other tuned
sharpening mechanism is needed to model cochlear tuning as seen in either the
mechanics or the neural firings.

5. A bandpass filterbank to model cochlear response ought to be designed as a
cascade, rather than as a parallel bank of independent filters, in order to achieve a
realistic amplitude and group-delay response, to model propagation of distortion products,
and to conserve on computation.

6. A model of the active adaptive cochlea must be extremely nonlinear over a wide
range of signal level, mainly to effect dynamic range compression.

7. Odd-order distortion products in the hydrodynamic system are audible under
special conditions, and are maximum for cochlear input power levels comparable to or a
little higher than the power that can be supplied by the outer hair cells.

8. Viscosity of the cochlear fluid is negligible except at a boundary layer at the
basilar membrane.  That is, very little energy is dissipated in the bulk of the fluid, but as
the wave collapses onto the membrane in the short-wave region, energy is dissipated into
the membrane and into fluid drag along the membrane.

9. Outer hair cells act approximately like a negative boundary layer viscosity,
adding a force to the membrane proportional to its velocity, for frequencies below CF.
The transition from negative damping to positive damping is not sharply tuned.

10. In the normally-functioning cochlea, energy travels in one direction—standing
waves, acoustic emissions, and reflections may be neglected except in pathologies.

This approach has been the basis of our work on cochlear modeling applied to
speech recognition, including custom VLSI digital and analog implementations of
cochlear models.

Conclusions

The progress of scientific research is generally accelerated through the use of good
models to guide the design and interpretation of experiments.  A key element missing
from most auditory models in recent years is a dynamic AGC.  We believe it is now
important to include such an AGC element to help resolve some of the controversies in
the hearing field, such as questions of sharpness of tuning.  We propose that
neurophysiologists might do well to devote more effort to answering the many open
questions concerning the details of cochlear mechanical gain variation, in order to
contribute to the development of a comprehensive and realistic model of hearing.
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FIGURE 1    Iso-intensity data and approximated curves (left) and iso-velocity data (right) re-plotted from Figure 1 of
Robles et al. (1986).  Notice that the iso-intensity data show an input-output compression of about 2:1 near CF; that is, each
10 dB increase in input intensity causes a 5 dB decrease in the mechanical gain of the cochlea.  This compression results in
the iso-velocity curve being significantly sharper than even the sharpest of the transfer functions.


