








 

2echniques to recreate sounds from perceptual displays known as
cochleagrams and correlograms are developed using a convex
pro?ection framework. @rior work on cochlearAmodel inversion is
extended to account for rectiBcation and gain adaptation. A prior
technique for phase recovery in spectrogram inversion is comA
bined with the synchronized overlapAandAadd technique of speech
rate modiBcation, and is applied to inverting the shortAtime autoA
correlation function representation in the auditory correlogram.
Improved methods of initial phase estimation are explored. A
range of computational cost options, with and without iteration,
produce a range of quality levels from fair to near perfect.





 

Eur long term interest in auditory models and perceptual displays
[2] is motivated by the problem of sound understanding, espeA
cially the separation of speech from noisy backgrounds and interA
fering speakers. Ie use the correlogram and related
representations as pattern spaces within which sounds can be
JunderstoodK and JseparatedK [L][M]. Ie are therefore interested
in resynthesizing sounds from these representations as a way to
test and evaluate sound separation algorithms, or even as a way to
apply sound separation to problems such as speech enhancement.
2he conversion of sound to a correlogram involves the intermediA
ate representation of a cochleagram, as shown in Figure 1, so we
address cochlearAmodel inversion as a separate piece of the overA
all problem.

Ihy pursue an auditory approach to sound separationP AdapA
tive linear techniques for sound separation and enhancement, such
as comb Blters and microphone arrays, have met with only limited
success. It is our hypothesis that the human brain uses cues
extracted by nonlinear processing stages of the auditory system to
group sounds. Qodels based on nonlinear auditory processes thus
have the potential to do better separation than is possible with linA
ear operations on sound waveforms. A primary cue, particularly
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relevant to speech, is common periodicity across frequencies,
which is made explicit by the correlogram. Ether cues, such as
common onsets and common motion, are available with further
processing. A number of labs have described the use of these techA
niques to identify portions of a sound that come from the same
source.

2he inversion techniques described here are important
because they allow us to readily evaluate the results of sound sepA
aration models that Jzero outK unwanted signal portions in the
correlogram domain. Eur work extends the convex pro?ection
approach of Yang [V] by considering a different cochlear model,
and by including the correlogram inversion. 2he convex pro?ecA
tion approach is well suited to JBlling inK missing information.

Ie explore a number of reconstruction options. Tome are fast
and thus could operate in realAtime, while other techniques use
timeAconsuming iterations to produce reconstructions perceptuA
ally equivalent to the original sound. Fast versions of these algoA
rithms could allow us to separate a speakerZs voice from the
background noise in real time.





 

Figure 2 shows a block diagram of the cochlear model [X] that we
use in our work. 2he basis of the model is a bank of Blters, impleA
mented as a cascade of lowApass Blters, that splits the input signal
into spectral bands. 2he output from each Blter in the bank is
called a channel. 2he energy in each channel is detected and used
to ad?ust the channel gain, implementing a simple model of audiA
tory sensitivity adaptation, or automatic gain control (A\C). 2he
halfAwave detection nonlinearity provides a waveform for each
channel that roughly represents the instantaneous neural Bring
rate at each position along the cochlea.

2he correlogram further reBnes the information coming out of
the cochlear channels by summarizing the periodicities in the sigA
nal using shortAtime autocorrelation functions. Ie believe that
this periodicity information is an important intermediate represenA
tation in human auditory processing, and is key to understanding
pitch perception, auditory scene analysis, and our ability to underA
stand sound in a noisy environment.
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Figure 1. 2hree stages in lowAlevel auditory perception are shown here. Tound waves are converted into a detailed representation
with broad spectral bands, known as cochleagrams. 2he correlogram then summarizes the periodicities in the cochleagram with
shortAtime autocorrelation. 2he result is a perceptual movie synchronized to the acoustic signal. 2wo inversion problems addressed
in this work are indicated with arrows from right to left.
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Qany of the steps described in this paper are based on convex
pro?ections. Consider a bandAlimited signal with known positive
values, the negative values lost due to a halfAwave rectiBer
(HI^). 2he original waveform is a member of two convex sets:
the bandlimited signals, and the set of signals with the given posiA
tive values. ey pro?ecting a signal estimate onto each set in turn, a
signal can be found that satisBes both constraints. If the constraints
are tight enough, then the desired signal will be the only one found
[f].

2his paper describes the inversion process in the two stages
shown in Figure 1, from a cochleagram to a waveform, and then
from a correlogram to a cochleagram. 2here is no information lost
in the Blter bank or the A\C, so in principle these stages can be
directly inverted. 2he detection stage  in our work is a HI^,
which drops the negative portions of the waveform. 2his informaA
tion must be reconstructed from what is known about each chanA
nelZs signal: it is bandAlimited, the positive values are known, and
the combination of all channels must produce a consistent waveA
form. 2hese inversion steps are described in Tection L.

eoth correlogram inversion and spectrogram inversion share
the same problem, recovering the phase that has been lost. Tection
M describes the inversion process for both representations. 2he
entire process is summarized in Tection V. Ether cochlear models
and other approaches to computing correlogramAlike representaA
tions are amenable to the inversion techniques described.





 

2he cochlear output is inverted by undoing the A\C, Bnding the
missing portions of the waveform that were removed by the detecA
tor, and combining the channels of the Blter bank to create a waveA
form that will generate the same cochleagram.

2he filter bank stage of the cochlear model is easily inverted
with known techniques based on analysisAresynthesis Blter banks.
In particular, it is inverted by running each cochlear channel back
through the original Blter bank, but with timeAreversed impulse
responses, and summing the result. Any remaining spectral tilt can
be Bxed with a simple Blter. A less expensive way to correct the
gross features in the spectral tilt is to weight each channel by a
Bxed gain. 2he gain due to passing through each channel Blter
twice can be written as a matrix, , with terms that are a function
of the channel number and a number of discrete frequencies. 2he
overAdetermined matrix equation , where  is a colA
umn vector of channel weights, and  is a column vector of
desired gains (usually unity) at each discrete frequency, is then
solved in a leastAsquares sense. All results in this paper correct for
spectral tilt by weighting each channel in this manner.

In our cochlear model, inner hair cells are modeled as a simple
halfAwave rectiBer. Ihen the negative portions of the waveform
have been thrown away, can the information be recovered from
what is known about each cochlear channelP Ie know the positive
portions of the waveform and know that each channel has limited
spectral content and no DC response. 2his information can be used
to Bnd a complete waveform. ey pro?ecting onto convex sets, in
this case speciBed in the time and frequency domains, a waveform
is found that approximates the original Blter bank output. 



   


 

2he structure of the inversion using convex pro?ections to
directly invert the cochlear detector (HI^) is shown in Figure La.
Alternately, the spectral pro?ection can be implemented using the
cochlear Blter bank itself. Ie have taken this a step further by
combining the information from all channels after performing
each iteration. 2his is shown in Figure Lb. 2he temporal pro?ection
is realized by Bltering the estimated cochlear reconstruction with
the Blter bank, and combining the known positive values with the
newly estimated negative values.

2he reconstructions in this paper are generated using the proA
?ections shown in Figure Lb. Due to the fact that the HI^ cuts the
energy in the signal by approximately two, the HI^ inversion
converges much more quickly if the detected signals are scaled by
a factor of two before the Brst spectral pro?ection.

Finally, the A\C is implemented as a multiplicative gain.
Each gain is set based on the recent history of the nearby channels
and the A\C is inverted by dividing by the computed gain. Tince
the A\C gains are calculated by feedback from the cochleagram
output, the gain can be exactly reconstructed from the cochleA
agram. 2his is not to imply that there are not numerical errors.
Iith very large signals, the A\C state is pushed close to one and
the gain hovers near zero. Tmall amounts of noise sent back
through the A\C state estimator translate into large changes in
gain when the A\C is inverted.

Figure M shows cochleagram inversions for an impulse and the
syllable Jtap.K
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 2his Bgure shows reconstructions, Brst with no
iterations and then with 10 iterations to recover the lost HI^
information. 2he reconstruction of JtapK with A\C inversion is
indistinguishable from the original. 2he compressed JtapK has
stronger onsets compared to the original. 





 

An important part of correlogram inversion is the algorithm to
recover the phase from the shortAtime autocorrelation functions of
the cochleagram channels. Sormally when computing a spectroA
gram, only the magnitude is retained and the phase information is
thrown away. A line of the correlogram is the shortAtime autocorreA
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Figure L. 2his Bgure shows convex pro?ections (dark
boxes) being used to recover the information lost in the
detection stage: a) is the conventional approach, b) has the
spectral pro?ection folded into the Blter bank inversion.

 

Figure 2. 2hree stages of the simple cochlear model used in
this paper are shown above.


































 

lation function of a channel of the cochleagram, or the Fourier
transform of the power spectrum. 2he work described here is an
extension of the work described by \rifBn and _im [i]. 2heir basic
algorithm inverts a magnitudeAonly spectrogram using convex proA
?ection to arrive at a set of phase estimates that produce a consistent
time domain signal.

2hree changes are described here that signiBcantly improve the
performance of this algorithm. First, it is important to compute the
spectrogram in a way that minimizes the phase. Tecond, a weighted
correlation can be used to Bnd an initial estimate of the phase for
each window of data. Finally, knowledge about a correlogram can
be used to further reBne the estimate.

2he performance of these algorithms is described by measuring
the errors in the frequency domain, even though perceived quality
does not always correlate with this measure [U]. 2he spectrogram
inversion process does not guarantee that the reconstructed waveA
form will match the original waveform, only that the spectral error
is reduced at each step.





 

2he way that data is loaded into an array and windowed before
computing the FF2 signiBcantly affects the phase of the result and
thus the performance of the inversion algorithm. A time domain
window is often used to minimize discontinuities in the data. 2he
position of the data and this window affects the phase of the resultA
ing spectrogram.

Data can be loaded into an array for input to an FF2 algorithm
in one of two ways. A simple way to load the array puts the data in
order into the array and centers the window in the array. 2his is
shown in Figure Va. 2his puts the ma?ority of the energy in the sigA
nal in the center of the array and thus the phase of the iZth frequency
bin is centered around .

Figure Vb shows the timeAdomain data shifted so that the center
of the window is at the start of the array. Sow the data is lined up in
JcosineK phase and the phase of each spectral bin will tend to fall
near 0. Ie call this the FF2Thift approach.

2he table below shows the spectral error with and without FF2A
Thift. 2he error is calculated using a L00Hz carrier modulated with
a X0 Hz sinusoid.

So Iterations 10 Iterations
Iithout FF2Thift ffj Mj

Iith FF2Thift Lfj 2j







 

In the approach described by \rifBn and _im [i], there is no
information about the phase. Assigning zero to each phase is as
good a guess as any other. (Ef course, as shown above with the
FF2Thift, this might not always be the best assumption.) eut
often there is signiBcant overlap between the windows of data.
Ence one windowZs data is inverted, then we should choose the
phase for the second window so that it is consistent with the Brst.

2he Brst optimization is motivated by the Jsynchronized overA
lapAaddK procedure of ^oucos and Iilgus [U]. Ie believe this is
the Brst time this has been applied to spectrogram inversion. 2heir
procedure, originally applied to timeAscale modiBcation, uses
crossAcorrelation to Bnd the optimum time delay to overlap and
add a new window of data to that part of the waveform that has
already been calculated. 

A simple way to properly align each new window is to add a
linear phase delay to the spectral data to insure the best possible
correlation between the existing data and the new data. 2he new
window of data is rotated within the FF2 window looking for the
best match with the partial reconstruction. 

Data from multiple windows are combined into a reconA
structed waveform using a leastAsquares approach as described by
\rifBn and _im. 2his involves weighting each sample of data by
the window used to create the initial spectrum or

where 





 

 is the IFF2 of the spectrogram computed with window 
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at intervals of 





 

 samples. 2he rotation is done before weighting
the data and doing the overlapAandAadd. In the equation above, 
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changed to the rotated output from the IFF2 algorithm.

2he next table shows the spectral error using three different
algorithms for aligning the phases. 2he rows with zero initial
phase mean that each window of data is independently inverted
starting from zero phase.





 

 means that the new data is
circularly correlated with the existing data and no weighting is
applied to the result before picking the correlation peak. 






 

 means that the correlation function is weighted so that
correlations close to zero shift are more likely to be chosen.

2his table shows the percent spectral error as a function of
input type (either the word Jtap,K or a cosine carrier modulated
with a lower freqency cosine), the initial phase algorithm, and the
initial error and error after 10 iterations. In all cases a 2VXApoint
window is moved XM points per frame (1XkHz sampling rate.)

In general, the results show mixed response when comparing
zero phase versus weighted rotation for the modulated sinusoids.
Ihen a voice is used, the results are clear cut. In most cases the
weighted crossAcorrelationArotation scheme reduces the error by
as much as a factor of 10.
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Figure M. Cochleagram inversions of an impulse and the
word Jtap.K 2he top graphs show the impulse response
with and without any iterations. 2he remaining error is
caused by the limited bandwidth of the cochlear Blter bank.
2he bottom graphs show the iterated cochleagram inverA
sion, with and without the A\C inversion. 2he later is a
good way to see the perceptual effect of the A\C.

   











    













    









   









   

 

Figure V. 2wo ways to load data into an FF2. Faster reconA
structions are possible with the approach shown in (b).



 

Sow that we have improved spectrogram inversion techniques,
we move to apply these techniques to the correlogram inversion
problem.





 

2he correlogram is inverted by observing that the autocorrelation of
a window of data contains the same information as a power specA
trum. 2hus a series of autocorrelations, for any one channel, is
exactly equivalent to a spectrogram of the channel. A spectrogram
is inverted, if the windows of data overlap, by recovering the phase
in the original Fourier spectrum as discussed in the previous secA
tion.

Ie can invert each channel of the correlogram independently.
2he result is a series of time waveforms, one for each channel, that
represent an estimate of the cochleagram. 2wo additional bits of
information are used to reduce the computations needed for recovA
ering the phase information. In both cases the idea is to generate a
better estimate of the phase so that fewer iterations are needed to
recover the original phase.

2he Brst optimization is based on the structure of a cochlear BlA
ter bank. 2here is signiBcant spectral overlap in the channels of a
cochlear model. Ence we recover the phase in one channel, this
provides a good estimate of the phase for all frames of data in an
ad?acent channel. 2he second optimization uses the fact that the
output of the cochlear energy detectors is always positive. 2he error
at each iteration step is reduced by setting the negative values to
zero.

Figure X shows the spectral error, as a function of channel numA
ber, with a number of different correlogram reconstruction techA
niques. 2he different lines show the spectral error assuming zero
initial phase (zero), rotating each window of data before adding to
the partial reconstruction (rotated), and copying the phase from the
previous channel (phase). 2he results before and after iterating 10
times are shown.





 

2his paper has described techniques to estimate a waveform that
generates a given correlogram. ey converting each row of the corA
relation into a shortAtime power spectrum, the spectrogram inverA
sion techniques described in Tection M are used to estimate the
output of each cochlear channel. 2he techniques described in TecA
tion M.L take into account the special properties of a correlogram to
improve the initial phase estimates and reduce the number of iteraA
tions needed to get a good estimate of the cochlear output.

\iven a cochleagram, or an estimate of the cochleagram from a
correlogram inversion, an estimate of the original waveform is
found by inverting the adaptation mechanism, recovering the inforA
mation lost in detection, and then backing out the Blter bank. 2he

 

result is a waveform that could have generated the initial cochleA
agram or correlogram. Figure f shows reconstructions from corA
relograms of an impulse and the syllable Jtap.K Ihile the
waveforms donZt look perfect, most of the error is in the phase
and the reconstructions sound very good in all cases.

For an even better reconstruction, an outer pro?ection iteraA
tion loop can be executed, computing the cochleagram and comA
plex spectrogram of the reconstruction and using its phase
information to improve the next reconstruction. Doing this on the
impulse train shown in Figure f does reduce the spectral error to
very near zero, but does not change the waveform or the percepA
tual error much.
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Figure X. 2he spectral error is shown here for three differA
ent estimates for the initial phase of each window of data.
Although the rotated result had higher spectral error in
this case, the resulting waveform sound more lifelike then
the other results.

   




























   






























   











   











   













   











Figure f. Complete reconstruction, with and without corA
relogram and cochleagram iterations, of an impulse train
and the word ptap.Z


