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Introduction
Models of the cochlea, or inner ear, can be applied to a variety of problems in sound analysis or machine
hearing. The popular notion of modeling the cochlea as a bandpass filterbank needs to be supported—
and modified—by an improved treatment of cochlear hydrodynamics as an adaptive linear system. We
present a simple way to understand cochlear hydrodynamics and implications for the design of cascade
filterbank models of the cochlea.

We base our analysis on the classic work of Sir Horace Lamb, Hydrodynamics [Lamb 45], and of J.
W. S. Rayleigh, The Theory of Sound [Rayleigh 45], which explain fluid flow problems and solutions
very clearly. Lamb’s chapters on two-dimensional flow and surface waves are particularly relevant, as
is Rayleigh’s section on capillarity. Our treatment of the hydrodynamics is rather lengthy, due to our
attempt to make derivations understandable without resort to references. Our title reflects our observation
that other publications in this field mystify the subject by omitting most of the relevant supporting detail,
and are therefore hard to use for deriving or comparing new theories and models.

We treat the fluid-mechanics of the cochlea as a two-dimensional system, with waves propagating
along the x dimension or length of the ducts, and with fluid motion depending on depth y. Variations
across the third dimension (i. e., across the width of the cochlear partition and perhaps further if the
ducts are wider than the flexible part of the partition) are also significant, but the characteristic lengths
in that dimension tend to be larger than in the other dimensions, at least in the interesting best-frequency
region. For the present analysis, we assume all fluid motions and pressures are independent of the third
dimension.

The WKB approximation is used to relate local properties of the system to traveling waves on the
cochlear partition; this approximation is equivalent to viewing the cochlea as a cascade of filters in which
signals only propagate in the forward direction. The validity of this approach is based on the observation
that the properties of the medium change only slowly and that wave energy is therefore not reflected to
any significant degree [de Boer 80].

The effect of the outer hair cells is included as a variable negative damping term; the variable damping
mechanism is shown to be effective as a wide-range automatic gain control (AGC) associated with a
moderate change in sharpness of tuning with signal level. The system is not highly tuned, but rather
achieves a high-gain pseudoresonance by combining the modest gains of many stages; nevertheless, sharp
iso-output tuning curves result from the interaction of the adaptive gains and the filters, as has been
observed experimentally in both neural frequency threshold curves and basilar membrane iso-velocity
and iso-displacement curves.

In the final section we address a few of the active controversial concepts in cochlear mechanics and
cochlear modeling: membrane mass, sharpness, second filter, filterbank structure, nonlinearity, etc.

Mathematical Approach
Sounds entering the cochlea initiate traveling waves of fluid pressure and cochlear partition motion that
propagate from the base toward the apex. The fluid-mechanical system of ducts separated by a flexible
partition is like a waveguide or transmission line, in which wavelength and propagation velocity depend
on the frequency of a wave and on the physical properties of the waveguide. In the cochlea, the physical
properties of the partition are not constant with distance, but instead change radically from base to apex.
The changing parameters lead to the desirable behavior of sorting out sounds by their frequencies or time
scales; unfortunately, the parameter variability makes the wave analysis a bit more complex. This section
discusses the mathematics of waves in such varying media.
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Mathematical Waves

The instantaneous value W of the pressure or displacement of a wave propagating in a one-dimensional
medium often is described in terms of single frequencies as the real part of a complex exponential (see
Appendix A for help with notation):

W (x, t) = A(x) exp (iθ) = A(x) exp (i{kx− ωt}) (1)

in which θ is known in the field of geometric acoustics as the eikonal, and A(x) is either constant or
changing slowly in space compared to the wave oscillations. If frequency ω and wavenumber k (spatial
frequency) are positive and real and A(x) is constant, W is a wave propagating to the right (toward +x)
at a phase velocity c = ω/k with no change in amplitude.

Differential equations involving W generally are derived from the physics of the system (or from an
approximation, such as a 2D cochlear model). The differential equations are then converted to algebraic
equations involving parameters of θ by noting that W can be factored out of its derivatives when A(x) is
constant (or if A is assumed constant when it is nearly so):

∂W

∂x
= i

∂θ

∂x
A exp (iθ) = ikW (2)

∂W

∂t
= i

∂θ

∂t
A exp (iθ) = −iωW (3)

and similarly for higher-order derivatives. The resulting algebraic equations are referred to as eikonal
equations or dispersion relations. Pairs of ω and k that satisfy the dispersion relations represent waves
compatible with the physical system.

From the dispersion relations, we can calculate the velocity of the wave. If c is independent of ω, all
frequencies travel at the same speed and the medium is said to be nondispersive. Real media tend to be
lossy and dispersive; in the cochlea, higher frequencies are known to propagate more slowly than lower
frequencies. In dispersive media, the group velocity U , or the speed at which wave envelopes and energy
propagate, is the derivative dω/dk, which differs from the phase velocity ω/k.

Dispersion relations generally have symmetric solutions, such that any wave traveling in one direction
has a corresponding solution of the same frequency traveling with the same speed in the opposite direction.
If, for a given real value of ω, the solution for k is complex, then the equations imply a wave amplitude
that is growing or diminishing exponentially with distance x. If the imaginary part ki of k = kr + iki
is positive, the wave diminishes toward the right (+x); in a dissipative system, a wave diminishes in the
direction that it travels. The wave may be written as

W (x, t) = A exp (i{krx− ωt}) exp (−kix) (4)

which has a real part that is recognized as a traveling sinusoid damped in space:

Re[W (x, t)] = A cos (krx− ωt) exp (−kix) (5)

An example of a damped traveling wave in one dimension is shown in Figure 1, with k = 1.0 + 0.1 i.
Two time snapshots separated by 1/ω are shown, so the phase shift between them is 1 radian.

In the cochlea, working out the relations between ω and k is more complex than in a one-dimensional
wave system, such as a vibrating string. The fluid-flow problem must be worked out first in two or three
dimensions, but ultimately it is possible to represent displacement, velocity, and pressure waves on the
cochlear partition in one spatial dimension as k varies with ω and x.

Nonuniform Media and Filter Cascades

As we will see, the dispersion relations that must be satisfied by pairs of ω and k involve the physical
parameters of the cochlear partition and cochlear ducts, which are changing with the x dimension (con-
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ventionally referred to as the cochlear place dimension, or simply place). The differential equations that
describe the nonuniform physical system are not solvable except under very specific restrictions of form.
Nevertheless, excellent approximate solutions for wave propagation in such nonuniform media are well
known, and correspond to a wave propagating locally according to local wavenumber solutions.

Any small section of the medium of length ∆x over which the properties do not change much behaves
just as would a small section in a uniform medium: It contributes a phase shift kr∆x and a log gain −ki∆x.
The amplitude A(x) also may need to be adjusted to conserve energy as energy-storage parameters such
as spring constants (membrane stiffness) change, even in a lossless medium. These observations are
equivalent to the WKB approximation (named after the three physicists who applied it to quantum
mechanics problems), which is often invoked to solve cochlear model differential equations. The WKB
approximation simply states that

W (x, t) ≈ A(x) exp
(
i{

∫
k dx− ωt}

)
(6)

If k is independent of x,
∫
k dx is the same as kx, in which case the solution is exact; the approximation

is good so long as k doesn’t change by much in a wavelength (or in a distance 1/k, which is less than a
wavelength by a factor of 2π).

Steele [Steele 87] points out that the WKB method, named after Wentzel, Kramers, and Brillouin,
might better be called the CLG method after the earlier workers Carlini, Liouville, and Green, or the
Ranke method after the first application of such a technique to analysis of a 2D cochlear model [Ranke 50]
(Ranke does not explain his method well enough that we can see the equivalence that Steele mentions;
however, his paper is quite interesting for its historical perspective on the controversy of how to analyze
the cochlea). All the references we have found for the WKB method (none of which are particularly
enlightening except perhaps to a quantum mechanic) show a solution whose amplitude is A(x) = k−1/2,
with little or no explanation of how they arrived at that. A more careful consideration is needed in
analyzing the cochlea to understand how wave amplitudes vary with wavenumber—see the subsection
below on Energy Flow and Wave Amplitudes.

A wave-propagation medium can be approximated (for waves traveling in one direction) by a cascade
of filters (single-input, single-output, linear, continuous-time or discrete-time systems) as illustrated in
Figure 2. A filter is typically characterized by its transfer function H(ω), sometimes expressed as H(s)
or H(Z), with s = iω for continuous-time systems or Z = exp (iω∆t) for discrete-time systems. A
nonuniform wave medium such as the cochlea can be spatially discretized by looking at the outputs of N
short sections of length ∆x; the section outputs, or taps, can be indexed by n, an integer place designator
that corresponds to the x location n∆x. A cascade of filters H1, H2, . . . , Hn, . . . , HN can be designed to
approximate the response of the wave medium at the output taps. In passing from tap n− 1 to tap n, a
propagating (complex) wave will be modified by a factor of Hn(ω), which should match the effect of the
wave medium.

The equivalent transfer function Hn(ω), a function of place (tap number n) and frequency, is thus
directly related to the complex wavenumber k(ω, x), a function of place and frequency. The relation
between the filter cascade and the wave medium is

Hn(ω) = exp (ik∆x) with k evaluated at x = n∆x (7)

or k(ω, x) =
log (Hn(ω))

i∆x
for x = n∆x (8)

If A(x) is not constant, the transfer function magnitude should also include a DC-gain factor A(n∆x)/A({n−
1}∆x), which is always near 1.

Because H and k may both be complex, the phase and loss terms may be separated using log (H) =
log (|H|) + i arg(H):

log (H) = ik∆x = ikr∆x− ki∆x (9)

log (|H|) = −ki∆x (10)
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arg(H) = kr∆x (11)

Therefore, if we want to model the action of the cochlea by a cascade of simple filters, each filter should
be designed to have a phase shift or delay that matches kr and a gain or loss that matches ki, all as a
function of frequency

gain = exp (−ki∆x) (12)

group delay =
dphase
dω

=
dkr
dω
∆x =

∆x

U
(13)

(where U is the group velocity; the equation implies that the previous definition of group velocity, dω/dk,
is correctly generalized to dω/dkr). The overall transfer function of the cascade of filters, from input to
tap m, which we call Hm, is

Hm(ω) =
m∏

n=0

Hn(ω)

= exp

(
m∑

n=0

log (Hn(ω))

)

= exp

(
i

m∑

n=0

k(ω, n∆x)∆x

)
(14)

The integral form of the sum in the last line in Equation 14 is the form usually used as the WKB
approximation:

∫
k dx. This formulation implies that we will be more exact by using k values averaged

over sections of x, rather than values at selected points.
These formulae provide a way to translate between a distributed-parameter wave view and a lumped-

parameter filter view of the cochlea. The filter-cascade model can be implemented easily, with either
analog or digital circuits, and will be realistic to the extent that waves do not reflect back toward the
base and that the sections are small enough that the value of k does not change much within a section.

Pseudoresonance

In the cochlea, the wavenumber increases roughly exponentially with place for a given frequency; that
is, propagation velocity decreases exponentially, and hence wavelength decreases exponentially, as a wave
travels from the base toward the apex. The energy in a wave “piles up” into smaller and smaller distances
as the wave propagates.

From energy conservation considerations we find that wave amplitudes A(x) for pressure or velocity
potential (see section Fluid Mechanical Preliminaries) in a passive lossless cochlea are roughly constant
(in the case of a 2D short-wave approximation, pressure and velocity-potential wave amplitudes are
independent of k if the variation in k is caused by variation only of the stiffness parameter). Conversion
to basilar-membrane displacement or velocity waves involves a spatial differentiation, so their amplitudes
will increase roughly in proportion to k as the waves travel. Loss terms tend to be high order (i. e., roughly
proportional to a high power of ω or k), so losses reduce the wave energy quickly near cutoff, more than
canceling the slowly increasing A(x). The resulting rise and fall has been termed a pseudoresonance
[Holmes 83]; it does not involve a resonance between membrane mass and stiffness, as some models do,
and it is not sharply tuned. Low-order passive-loss or active-gain terms mainly affect the height of the
pseudoresonance, and have relatively less effect on its peak position and cutoff sharpness.

Scaling

A filter cascade or wave medium is said to scale (or be scale-invariant) if the response properties at
any point are just like those at any other point with a change in time scale (or, equivalently, a change
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in frequency scale). It is particularly easy to build filter cascades that scale, because each stage is
identical except that time constants change by a constant ratio from one stage to the next. In general, all
numeric characteristics such as cutoff frequencies and component values in such a system will be geometric
(exponential) functions of x, the place dimension, or of n, the stage index.

In a system that scales, the response for all places may be specified as a single transfer function H(f),
where f is a nondimensional normalized frequency:

f = ω/ωN (15)

and ωN is any conveniently defined natural frequency that depends on the place (e. g., we choose ωN = 1/τ
to characterize filters made with time constants of τ). Because of the assumed geometric variation of
parameters, we can write ωN as

ωN = ω0 exp
(
−x

dω

)
(16)

where ω0 is the natural frequency at x = 0 (at the base) and dω is the characteristic distance in which
ωN decreases by a factor of e.

Changing to a log-frequency scale in terms of lf = log (f), we define the function G(lf ) = H(f), which
may be written as

G(lf ) = G(log
(

ω

ωN

)
) = G(log

(
ω

ω0

)
+

x

dω
) (17)

This equation shows that the transfer function G expressed as a function of log frequency lf is identical
to the transfer function for a particular frequency ω expressed as a function of place x, for an appropriate
offset and place scaling. Thus, we can label the independent axes of transfer function plots interchangeably
in either place or log frequency units, for a particular frequency or place respectively.

In the cochlea, the function G will be lowpass. Above a certain cutoff frequency, depending on the
place, the magnitude of the response will quickly approach zero; equivalently, beyond a certain place,
depending on frequency, the response will quickly approach zero.

The stiffness is the most important parameter of the cochlear partition that changes from base to
apex, and has the effect of changing the characteristic frequency scale with place (ωN varies as the square
root of stiffness if other parameters such as duct size are constant). Over much of the x dimension of real
cochleas, the stiffness varies approximately geometrically [Dallos 78]:

S ≈ S0 exp
(
−2x
dω

)
(18)

in which the characteristic distance of stiffness variation is half the characteristic distance dω.
Geometric parameter variation is convenient, but not necessary to our analysis. Tension, mass, and

loss parameters, if significant, should also vary as appropriate powers of exp (−x/dω) in order to preserve
simple scaling properties. In the real cochlea, responses scale only for frequencies above about 1 kHz
(i. e., within the top four octaves of our hearing range—the lower octaves are more compressed onto the
cochlear place dimension). The scaling assumption simply allows us the convenience of summarizing the
response of an entire system by a single function G, and does not prevent us from adopting more realistic
parameter variations later.

Fluid Mechanics of the Lossless Cochlea
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Fluid Mechanical Preliminaries

Three approximations are needed to make the approach to the hydrodynamics problem simple. First, the
cochlear fluids are assumed to have essentially zero viscosity, so that the sound energy is not dissipated
in the bulk of the fluid, but is transferred into motion of the organ of Corti. Second, it is assumed that
the fluid is incompressible, or equivalently that the velocity of sound in the fluid is large compared to the
velocities of the waves on the cochlear partition (Lighthill discusses energy flow involving the fast and
slow waves [Lighthill 81]). Third, fluid motions will be assumed to be small, so that second-order terms
may be neglected; for sound levels below the threshold of pain, this is probably a good approximation.

Under the condition of no viscosity, the motion of a fluid that is initially at rest can be described
in terms of a velocity potential φ. At any point (x, y) and at any time t, the velocity of a small volume
element of the fluid will be given by a spatial derivative of φ(x, y, t). The x and y components of velocity
are often called u and v, or are sometimes denoted by subscripts on a velocity vector v. That is,

u = vx = −∂φ

∂x
and v = vy = −∂φ

∂y
(19)

or, in terms of vector calculus notations,

v = −gradφ = −∇φ (20)

This is Lamb’s definition, which we adopt, but Rayleigh uses the opposite sign in defining velocity
potential (v = ∇φ).

If the fluid is incompressible, the flows into and out of a small region must balance (similar to Kirch-
hoff’s current law). This means the velocity field must neither converge nor diverge, so that

divv = ∇ · v =
∂vx

∂x
+

∂vy

∂y
= 0 (21)

or, in terms of velocity potential,

div gradφ = ∇2φ =
∂2φ

∂x2
+

∂2φ

∂y2
= 0 (22)

Traveling Waves in Fluid-filled Ducts

Consider the idealized unrolled cochlea—a rectangular box with a flexible partition separating upper and
lower ducts. One duct represents the scala tympani, and the other represents the combination of scala
vestibuli and scala media (the thin Reissner’s membrane is ignored). The separating partition represents
the more substantial basilar membrane in combination with the tectorial membrane and the rest of the
organ of Corti.

A duct is like a shallow pan of fluid of height h, with a hard wall at the bottom (at y = 0) and a
springy partition at y = h. The velocity of the partition as it moves up and down will be the same as
the y component of the fluid velocity at the surface, while the y component of the fluid velocity at the
bottom will be always zero. The similar duct on the other side of the partition must satisfy all the same
conditions, with a change of coordinates, as well as an anti-symmetry condition across the partitioin;
for now, only one duct need be considered. The velocity potential φ will not be continuous across the
partition, because the horizontal components of the fluid flows on opposite sides of the partition are in
opposite directions, as shown in Figure 3.

We expect the fluid and partition combination to behave approximately as a linear time-invariant
system, so it makes sense to characterize it in terms of its response to sinusoids or exponentials in time.
The real solutions should be in terms of sinusoidal traveling waves. For now, we take the partition
properties to be unchanging with x, so that we can understand the simple exact solutions for that case,
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which have constant wavelength and velocity. The equation that must be satisfied at all x, y, t is simply:

∇2φ = 0 (23)

under the boundary condition
∂φ

∂y
= 0 at y = 0 (24)

and an as-yet unstated condition imposed by the partition at y = h. The time variation must be in terms
of complex exponentials of frequency ω if we assume a sinusoidal source of that frequency.

We assume a solution of the form we want, namely a sinusoidal wave of amplitude P and frequency
f = ω/2π Hz, traveling at a speed of c = ω/k cm s−1 in the +x direction, with wavelength λ = 2π/k cm:

φ(x, y, t) = P cos(kx− ωt) =
P

2
[exp (i{kx− ωt}) + exp (−i{kx− ωt})] (25)

Then we need to find out what P and k need to be (following Lamb). Hopefully, P will depend only on
y, and k will not depend on y. Assuming P is independent of x, we find that

∇2φ = −Pk2 cos(kx− ωt) +
∂2P

∂y2
cos(kx− ωt) (26)

∇2φ

φ
= −k2 +

1
P

∂2P

∂y2
(27)

or
∂2P

∂y2
= k2P to satisfy ∇2φ = 0 (28)

The only solutions that satisfy this constraint are of the form

P (y) = A exp (ky) + B exp (−ky) (29)

which is nice because it means the characteristic distance, or space constant, is the same in both the x
and y dimensions. That is, the signal is damped by a factor 1/e in the y direction in the same distance
1/k as it takes to propagate through 1 radian of phase in the x direction.

The bottom boundary condition requires
∂P

∂y
= kA exp (ky) − kB exp (−ky) = 0 at y = 0 (30)

so we must choose A = B. Then P takes the form of a hyberbolic cosine:

P (y) = A exp (ky) + A exp (−ky) = 2A cosh(ky) (31)

To get a unit amplitude wave at the partition, we arbitrarily choose 2A = 1/ cosh(kh), so that

φ =
cosh(ky)
cosh(kh)

cos(kx− ωt) (32)

Thus, our desired solution works: The velocity potential is a simple lossless traveling wave in x, with
an amplitude P (y) that varies in a fairly simple way with position between the partition and the bottom
wall.

Now, even though we haven’t yet determined k, we are in a position to understand traveling waves in
a layer of fluid. If the fluid is deep compared to a wavelength (kh % 1), then

cosh(ky)
cosh(kh)

=
1
2 [exp (ky) + exp (−ky)]
1
2 [exp (kh) + exp (−kh)]

≈ exp (ky)
exp (kh)

= exp (k{y − h}) (33)

so the fluid motion drops off exponentially with distance from the partition. On the other hand, if the
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fluid is shallow compared to a wavelength (kh & 1), then

cosh(ky)
cosh(kh)

≈
1 + 1

2 (ky)2

1 + 1
2 (kh)2

≈ 1 +
(ky)2 − (kh)2

2
≈ 1 (34)

In that case, the velocity potential is relatively independent of y and the velocity is almost entirely
horizontal.

Various authors invoke one or the other of the above short-wave or long-wave approximations in
trying to get exact mathematical solutions to equations that only approximately represent the real wave
mechanics of the cochlea. Rather than pick one of these regions, we will show how the behavior smoothly
changes between them as parameters vary along the length of the cochlear partition. The intermediate
condition of kh = 1 is illustrated in Figure 3, which shows streamlines (parallel to v) at an instant of time.
The deflection of the cochlear partition is assumed to be negligible, as mentioned above, so the region of
fluid is bounded above and below by straight lines; nevertheless, we have exaggerated the deflection and
displayed it along with the streamlines, to help in visualizing the traveling wave.

So far we have derived solutions for any real values of ω and k, independent of any constraints imposed
by the partition. In the real system, pressures exerted on the fluid by the partition as it stretches and
moves impose constraints that restrict the possible values of ω and k.

Pressure and Acceleration

Newton’s law that relates force to acceleration via mass, F = ma, is well known to most of us. If we
consider the mass of and force on a small element of fluid, we can derive the corresponding relations:

− ∂p

∂x
= ρ

∂vx

∂t
and − ∂p

∂y
= ρ

∂vy

∂t
(35)

where p is the pressure in the fluid (a function of place and time), and ρ is the density, which is constant
for an incompressible fluid. Extraneous internal forces, such as gravity acting on the fluid mass, are
ignored.

Eliminating the spatial derivatives, and changing signs, these reduce to the simple relation:

p = ρ
∂φ

∂t
(36)

(assuming p now represents the deviation from the pressure at rest).
The pressure will assume the correct relation to φ throughout the bulk of the fluid for any of the

solutions we have considered, but for a solution to be genuine, the pressure and displacement at the
partition must match both the fluid solution and the physical properties of the partition.

The Cochlear Partition

The wave of cochlear-partition displacement (in the positive y direction) will be represented by δ(x, t)
which must match the vertical fluid velocity according to:

∂δ

∂t
= vy = −∂φ

∂y
(37)

The displacement is small enough that the fluid surface is still almost flat, or h + δ ≈ h.
The basilar membrane, which is the part of the partition usually emphasized in models, was once

thought to be under tension, and to propagate waves and resonate much like a tensioned string. A
membrane under tension prefers to be straight, rather than curved, and exerts a restoring pressure
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proportional to its curvature:

ptension = −T
∂2δ

∂x2
(38)

We’ll keep the tension term for now, but the partition is actually more like stiff beams running across
the width, with little tensional coupling between them. Because we don’t consider the width dimension,
in the 2D model the beams appear as a set of uncoupled springs, exerting a restoring pressure that only
depends on the local displacement:

pspring = Sδ (39)

where S is the transverse stiffness of the partition (reciprocal of volume compliance or distensibility). The
longitudinal stiffness is assumed to be zero, so that adjacent regions in x are not coupled to each other
(the effect would be equivalent to tension, if included, but it is generally agreed that such effects are quite
small, as required to get a sharp cutoff).

The mass of the partition (mostly in structures of the organ of Corti, rather than the basilar membrane
itself) is a subject of considerable controversy. If it is significant, it leads to a much more resonant response
than if it can be neglected, as we will see. The pressure due to acceleration of the mass is:

pmass = M
∂2δ

∂t2
(40)

The partition must also incorporate some loss mechanisms, such that sound energy will get deposited
into a transducer (and into waste heat). But before we consider possible loss mechanisms, it is instructive
to solve the lossless wave equation:

ρ
∂φ

∂t
= ptension + pspring + pmass

= −T
∂2δ

∂x2
+ Sδ + M

∂2δ

∂t2
at y = h

(41)

Differentiating both sides with respect to t, we can eliminate δ using the vy relation of Equation 37,
and get the partition boundary condition for φ:

ρ
∂2φ

∂t2
= T

∂3φ

∂x2∂y
− S

∂φ

∂y
−M

∂3φ

∂y∂t2
at y = h (42)

The derivatives needed are easy in the lossless case with real k:

φ = 2A cos(kx− ωt) cosh(ky)
∂2φ

∂t2
= −ω2φ

∂φ

∂y
= k2A cos(kx− ωt) sinh(ky) = k tanh(ky)φ

∂2φ

∂x2
= −k2φ

∂3φ

∂x2∂y
= −k3 tanh(ky)φ

∂3φ

∂y∂t2
= −ω2k tanh(ky)φ

(43)

Plugging in and eliminating φ and y yields the dispersion relation

−ω2ρ = −Tk3 tanh(kh) − Sk tanh(kh) + Mω2k tanh(kh) (44)
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which may be simplified to
ω2ρ = k tanh(kh)[Tk2 + S −Mω2] (45)

If T is zero and M is positive, there is a resonant frequency ωR =
√
S/M above which there is no real

solution for k (because the bracketed quantity on the right-hand-side of Equation 45 becomes negative),
even though the system is lossless. This result is discussed by Lighthill [Lighthill 81], who points out that
the flattening out of the ω vs. k curve as ω approaches ωR corresponds to a group velocity approaching
zero, so that any small amount of damping will cause all the wave energy to be absorbed in a small
boundary layer, resulting in a very sharp high-side cutoff. Lighthill contends that models that include
tension or longitudinal stiffness (positive T ) or that fail to include the partition mass M will not have a
critical layer absorption phenomenon, and will therefore not do a good job of modeling the cochlea.

On the other hand, the importance of M depends on whether the losses are so low that the wave
energy lasts to near the point of resonance, as opposed to being dissipated earlier, where the partition
mass is negligible. The curve of ω vs. k will show a decreasing group velocity (though not to zero) even
without the inclusion of mass, as we will see, and the resulting cochlear response has a well-defined best
frequency and sharp cutoff even without partition resonance. Evidence on the transfer function sharpness
from mechanical and neural measurements is still ambiguous at this time, due to the highly nonlinear
behavior of real cochleas. We find that the sharp iso-output tuning curves that are often used to justify
models with sharp transfer functions are better explained in terms of a nonlinear AGC involving rather
broad filters, as will be discussed in the section on active undamping. Therefore, we will for now consider
solutions with no mass and no tension.

In the long-wave region (tanh(kh) ≈ kh), the stiffness-only partition yields a nondispersive medium
with k = ω

√
ρ/hS (constant phase velocity and group velocity c = U = ω/k =

√
hS/ρ). In the short-

wave region (tanh(kh) ≈ 1) the system is dispersive with k = ω2ρ/S; the group velocity is inversely
proportional to frequency.

Because these solutions do not include any loss mechanism, the wavenumber k will continue to increase
as frequency increases or stiffness decreases (there is no cutoff, or critical frequency, in the massless and
lossless case). The partition displacement and velocity will also continue to increase without bound as
k increases, because velocity is a spatial derivative of φ and the wavelength is getting arbitrarily short.
These non-physical results are rectified in the next section, where loss mechanisms are considered.

Fluid Mechanics of the Lossy and Active Cochlea

Complex Variables and Lossy Waves

The extension to complex values of k requires a slightly different solution, because the solution from the
previous section grows exponentially for either very large or very small x if k is complex, as shown below
in Equation 48.

For the complex variable z = x + iy, defined to represent location in two dimensions, Lamb shows
that φ is always the real part of an analytic function w(z). That is,

φ + iψ = w(x + iy), for some differentiable w(z) (46)

That fact that w is analytic (has a definite differential with respect to z) implies that

∂φ

∂x
=

∂ψ

∂y
and

∂φ

∂y
= −∂ψ

∂x
(47)

which implies that the contours of ψ align with the gradiants of φ and vice-versa. The function ψ, the
imaginary part of w, is therefore called the stream function, because its contours are streamlines of fluid
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flow.
Any analytic function w of either z or its complex conjugate z∗ = x− iy will have ∇2w = 0, as will

any linear combination of such functions. Therefore, any φ which is the real part of such a function will
be a candidate velocity potential.

Having the solutions in the form of an analytic function is very convenient, because it is then easy to
trace out contours of ψ to illustrate the fluid flow streamlines. It also makes some of the later differential
equation solving easier, because complex exponentials often lead to simpler calculus and algebra than do
real trigonometric functions.

Using Re[cos(a + ib)] = cosh(b) cos(a), the solution from Equation 32 can be re-expressed as

w(z) = φ + iψ = 2A cos(kz − ωt)
= A[exp (i{kz − ωt}) + exp (−i{kz − ωt})]
= A[exp (−kix− kry) exp (i{krx− kiy − ωt})

+ exp (kix + kry) exp (−i{krx− kiy − ωt})]

(48)

For complex values of k, the desired solutions are damped in x, but the solution as shown in the last
line of Equation 48 may be seen to have its first component decaying with x (for positive ki) while the
second component grows with x. This can be fixed by going back to Equation 25, modifying one term to
use the complex conjugate of k, so that it decays appropriately with x, and by making the P factor on
one term be the complex conjugate of that on the other term, so that the result is still real:

φ(x, y, t) = P exp (i{kx− ωt}) + P ∗ exp (−i{k∗x− ωt})) (49)

Then, by repeating the analysis we find the solution must satisfy

P = A
2 [exp (ky) + exp (−ky)] = A cosh(ky) (50)

P ∗ = A
2 [exp (k∗y) + exp (−k∗y)] = A cosh(k∗y) (51)

With this solution for P , we have

φ = A cosh(ky) exp (i{kx− ωt}) + A cosh(k∗y) exp (−i{k∗x− ωt}) (52)

For the lossless case k and k∗ are identical, so that with the same choice of A as before this formulation
is the same as the solution in Equation 32.

The real function φ is not an analytic function of z, but is half the sum of an analytic function w and
its complex conjugate:

φ = Re[w] =
w + w∗

2
(53)

Therefore, it is easy to find w by identifying the terms of φ that are analytic functions of z, and leaving
out the terms that are functions of z∗. Expand and re-group φ thusly:

φ = A
2 [exp (ky) exp (i{kx− ωt}) + exp (−ky) exp (i{kx− ωt})

+ exp (k∗y) exp (−i{k∗x− ωt}) + exp (−k∗y) exp (−i{k∗x− ωt})]
= A

2 [exp (i{kz∗ − ωt}) + exp (i{kz − ωt})
+ exp (−i{k∗z − ωt}) + exp (−i{k∗z∗ − ωt})]

(54)
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This version of φ leads to the analytic solution for w, expressed here in several useful forms:

w = A[exp (i{kz − ωt}) + exp (−i{k∗z − ωt})]
= A[exp (ikrz − kiz − iωt) + exp (−ikrz − kiz + iωt)]
= A exp (−kix) [exp (−kry) exp (i{−kiy + krx− ωt})

+ exp (kry) exp (−i{kiy + krx− ωt})]
= A exp (−kix− ikiy) [exp (−kry) exp (i{krx− ωt})

+ exp (kry) exp (−i{krx− ωt})]
= 2A exp (−kiz) cos(krz − ωt)

(55)

Note that w∗(z) = w(z∗) = A exp (−kiz∗) cos(krz∗ − ωt) is an analytic function of z∗, but not of z.
The real part of this simple analytic function may also be expressed in various ways, using kr and ki

instead of k and k∗ as used above:

φ = Re[w] =
w + w∗

2
= A[exp (−kiz) cos(krz − ωt) + exp (−kiz

∗) cos(krz∗ − ωt)]

= A
2 [exp (−kix− ikiy + ikrx− kry − ωt)

+ exp (−kix− ikiy − ikrx + kry + ωt)
+ exp (−kix + ikiy + ikrx + kry − ωt)
+ exp (−kix + ikiy − ikrx− kry + ωt)]

= A[exp (−kix + kry) cos(kiy + krx− ωt)
+ exp (−kix− kry) cos(−kiy + krx− ωt)]

= A exp (−kix) [exp (+kry) cos(kiy + krx− ωt)
+ exp (−kry) cos(−kiy + krx− ωt)]

(56)

The last two lines of Equation 56 can be interpreted as representing a pair of waves traveling in
directions not quite aligned with x—one traveling slightly upward, with large amplitude near the partition,
and depositing energy into the partition (for positive loss ki), and other one smaller, traveling away
from the partition. For both waves, the direction of amplitude change is orthogonal to the direction of
propagation—that is, there is no change in amplitude along the direction that the waves are propagating,
though there is a reduction in amplitude along the x dimension.

The above expressions for w(z) or φ(x, y) are still slightly too complicated to allow us to easily solve
the wave equations. It will be useful to consider two more approximate solutions based on the observation
that the wave enters the short-wave regime before it damps significantly. For any region we will assume
that either (a) the solution for k is real, as considered earlier (ki = 0), or (b) the wavelength is short
compared to the depth (kh % 1), in which case the term that decreases exponentially as exp (−kry) may
be discarded. Then the solutions for w and φ are, (a) for the undamped region:

w = A cos(krz − ωt) (57)

φ = 2A cos(krx− ωt) cosh(kry) (58)

and, (b) for the short-wave region:

φ = A exp (−kix + kry) cos(kiy + krx− ωt) for kry % 1 (59)

w = A exp (kry − kix) exp (−i{krx + kiy − ωt})
= A exp (−i{krz − ωt}) exp (−kiz)
= A exp (−i{k∗z − ωt})

(60)
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If neither of these region approximations holds, i. e., if the wavelength is long enough while the system
is lossy enough, then our presumed solution does not seem to actually lead to a consistent solution—
factoring out w from its derivatives doesn’t work, so we don’t get an algebraic dispersion relation to solve.
We’re still not sure how to resolve this problem—it may be an indication that the WKB approximation
does not hold in this case, possibly because the combination of loss and long wavelength leads to significant
reflection even in a uniform medium.

Loss Mechanisms

The mechanisms that take energy from the traveling wave are not exactly known, but it seems reasonable
to consider two possible forms for such loss. First, a pressure proportional to partition velocity can be
included, perhaps representing a viscous loss in the small spaces of the organ of Corti as fluid streams
through and drags over the hair cells. The corresponding pressure term, with loss coefficient β, is

pvelocity = βvy = β
∂δ

∂t
(61)

Second, the rate of local longitudinal bending of the partition may contribute a pressure representing
energy lost to friction in the partition itself. The pressure term, with coefficient γ, is

pbending = −γ
∂3δ

∂x2∂t
(62)

Now we can write the complete lossy wave equation:

ρ
∂φ

∂t
= ptension + pspring + pmass + pvelocity + pbending

= −T
∂2δ

∂x2
+ Sδ + M

∂2δ

∂t2
+ β

∂δ

∂t
− γ

∂3δ

∂x2∂t
at y = h

(63)

As before, eliminating δ using Equation 37 we have the equation in terms of φ only:

ρ
∂2φ

∂t2
= T

∂3φ

∂x2∂y
− S

∂φ

∂y
−M

∂3φ

∂y∂t2
− β

∂2φ

∂y∂t
+ γ

∂4φ

∂x2∂y∂t
at y = h (64)

Because the loss only becomes significant in the short-wave region (at least for the values of parameters
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that we think are reasonable), the following short-wave solutions with complex k will be used:

φ = A cos(krx + kiy − ωt) exp (kry − kix) for kry % 1
instead of φ use w = φ + iψ

= A exp (−i{krx + kiy − ωt}) exp (kry − kix)
= A exp (iωt) exp (−ik∗x) exp (k∗y)

∂w
∂t

= iωw

∂2w
∂t2

= −ω2w

∂w
∂y

= k∗w

∂3φ

∂y∂t2
= −ω2k∗w

∂2w
∂y∂t

= iωk∗w

∂2w
∂x2

= −k∗2w

∂3w
∂x2∂y

= −k∗3w

∂4w
∂x2∂y∂t

= −iωk∗3w

(65)

The dispersion relation for the short-wave region with complex k is then

−ω2ρ = k∗[−Tk∗2 − S + Mω2 − iβω − iγωk∗2] (66)

which is equivalent, by sign change and conjugation, to

ω2ρ = k[Tk2 + S −Mω2 − iβω − iγωk2] (67)

Approximate Wavenumber Solutions

The dispersion relation Equation 67 can be separated into real and imaginary parts such that the two
unknowns kr and ki can both be solved for approximately in the short-wave region:

ω2ρ = kr[T{k2
r − k2

i } + S −Mω2 + 2γωkrki]

+ ki[βω + γω{k2
r − k2

i }− 2Tkrki]

+ i{kr[βω + γω{k2
r − k2

i }− 2Tkrki]

− ki[T{k2
r − k2

i } + S −Mω2 + 2γωkrki]}

(68)

As before, we may choose T and M to be zero for a simpler model, which leads to the simpler separated
dispersion relation

ω2ρ = kr[S + 2γωkrki] + kiω[β + γ{k2
r − k2

i }]
+ i{krω[β + γ{k2

r − k2
i }] − ki[S + 2γωkrki]}

(69)

At this point, it is appropriate to notice that the two dispersion relations for the two regions (Equa-
tion 45 and Equation 67) may be combined into one equation that is accurate in both regions and probably
also between regions:

ω2ρ = k tanh(kh)[Tk2 + S −Mω2 − iβω − iγωk2] (70)
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Some authors simply start from the lossless analysis and add imaginary terms into the dispersion relation
to model loss, without concern for the physical mechanisms or for the corresponding wave solutions; they
arrive at an equation similar to this one but without the separate orders of loss. We have agonized over
the derivations more, so that the mechanisms of loss can be understood and modified into mechanisms
of gain and loss appropriate to model the active effects of the outer hair cells.

It is instructive to look at approximations that make clear the dependence of k on the parameters. In
practice, the solutions for k are achieved by Newton’s method, starting from simple approximations, and
using the combined dispersion relation Equation 70. Note that Newton’s method works for a complex
function of a complex variable only if the function is analytic, since the derivative is needed to compute
an improved approximation.

In the lossless region, ignoring tension and mass, the long-wave approximation is a good start:

k ≈ ω
√
ρ/hS (71)

In the short-wave region, starting with real k and ignoring tension, a good approximation from Equa-
tion 69 is:

kr ≈ ω2ρ/S (72)

Given an approximate solution for kr, a first approximation for ki may be obtained by solving the
imaginary part of the dispersion relation in Equation 69, assuming ki & kr and ignoring terms with
k2
i and k3

i . Assuming only bending loss (β = 0), we find ki ≈ k3
rγω/S. Substituting in the short-wave

approximation for kr, we find that the bending loss comes in as a rather high power of frequency and
stiffness: ki ≈ γω7ρ3/S4 (which is proportional to S−7/2 if the response scales, because γ2 is proportional
to S).

Considering only velocity loss instead (still with no tension), the corresponding approximation is
ki ≈ krβω/S ≈ βω3ρ/S2. The loss still increases with frequency and decreases with stiffness, but much
more slowly for this simpler loss mechanism.

The relative loss, or damping, may be defined as

ξ = arg(k) ≈ ki
kr

(73)

When both loss mechanisms are included, the approximate solutions above simply add, so the complete
loss and damping approximations become

ki ≈
γω7ρ3

S4
+

βω3ρ

S2
(74)

and
ξ ≈ ki

kr
≈ γω5ρ2

S3
+

βω

S
(75)

The approximations for wavenumber kr and damping ξ may be interpreted either as frequency depen-
dent at a constant place (constant S, β, and γ), or as place dependent at a constant frequency (constant
ω). Thus a wave of frequency ω will propagate until the damping gets large; the damping grows ulti-
mately as exp (5x/dω) (assuming the geometric dependence of S discussed earlier, and with geometric γ
proportional to ωN or exp (−x/dω)). Therefore, the damping is near zero for low x and then comes up
very fast at a critical place xC . Similarly, at a given place, low frequencies are propagated with little loss,
but as ω grows, the damping grows ultimately as ω5 and kills waves above a critical frequency ωC .

The cochlea is known to have very sharp cutoff behavior, so it is reasonable to suppose that the γ
loss term is most significant in determining the critical points. The critical points may be estimated to
be near ξ = 1, ignoring β, as:

ωC ≈
[
S3/γρ2

]1/5 (76)
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If the system scales, critical frequencies and critical places are related geometrically:

ωC ≈
[
S3

0/γ0ρ
2
]1/5 exp

(
−x

dω

)
(77)

xC ≈ dω[− log (ω) + .2 log(S3
0/γ0ρ

2)] (78)

If the damping and stiffness coefficients do not scale geometrically, there is still a critical place as a
function of frequency, but it is not a simple function of log (ω).

For the two-region (lossless and short-wave) approach to be accurate, it is important that the damping
be small (say less than 0.1, corresponding to less than a factor of two amplitude change in a wavelength,
as in Figure 1) near the transition from lossless to short-wave regions (say at kh ≈ 1). That is,

ξ < 0.1 at krh = 1

The point krh = 1 may be estimated using the short-wave approximation as kr = 1/h ≈ ω2ρ/S, which
can be used to define a characteristic frequency or characteristic place related to h and independent of
loss coefficients:

ωh =
√
S/ρh =

√
S0/ρh exp

(
−x

dω

)

xh = dω[− log (ω) + .5 log(S0/ρh)]
(79)

Then a nearly equivalent requirement is

ξ < 0.1 at ω = ωh or x = xh (80)

The best frequency for a place (where the partition velocity or displacement is maximized) depends
on both β and γ, and will be significantly higher than the characteristic frequency and somewhat lower
than the critical frequency.

The definition of ωh can be plugged in for ω in the approximation for damping ξ in Equation 75, to
show that β and γ must be small enough to satisfy

β + γ/h2 < 0.1
√
Sρh (81)

If the losses are low and the partition mass is significant, the cutoff will be associated with the resonant
frequency, rather than with the place where damping gets large. If we take M constant to be consistent
with the scaling of the other parameters, the resonant frequency and place are given by:

ωR =
√
S/M =

√
S0/M exp

(
−x

dω

)

xR = dω[− log (ω) + .5 log(S0/M)]
(82)

Whether the mass is significant then depends on whether the critical frequency or the resonant fre-
quency is lower. The mass may be neglected if

ωC & ωR

[
S3/γρ2

]1/5 & [S/M ]1/2 (83)

or equivalently, in terms of a critical mass MC , if

M & MC = S
[
γρ2/S3

]2/5 = S−1/5γ2/5ρ4/5 (84)

In the real cochlea, which does not quite scale geometrically, it is likely that the mass is significant
only for the basal (high-frequency) regions, where the extra stiffness needed comes from an increasing
thickness and hence mass of the membrane. The changing significance of mass may explain why the
cochlear tuning is observed to be sharper at high frequencies than at low frequencies.
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In the far cutoff region, where ω % ωC or x % xC , we can see from Equation 67 that the high-order
loss dominates to give

k3 ≈ jωρ

γ
(85)

Therefore the model wavenumber approaches an angle of π/6 in the complex plane, with a magnitude
growing only as ω1/3. The actual behavior in this region will of course be strongly dependent on what
high-order loss mechanisms are operating in the cochlea.

Numerical Wavenumber Solutions

Figure 4 shows numerical solutions of k vs. x for two conditions: (1) high-order γ loss only, an ideal
passive condition; (2) γ loss and β gain, an active condition. The real and imaginary parts of k are
separately plotted on a log scale. For the region where ki is negative due to active gain, the log of its
absolute value is plotted; a cusp in the ki curve indicates the transition between gain and loss for the active
condition. The place scale has arbitrary units with 1500 units spanning three decades of characteristic
frequency (dω = 217.15); the horizontal axis may also be interpreted as log frequency (with a fixed place)
instead of as place (with a fixed frequency).

Energy Flow and Wave Amplitudes
Energy in a wave flows at a rate equal to the group velocity U = dω/dk. In order to understand how
wave amplitudes vary with position x and wavenumber k in nonuniform media, consider the power, or
rate of flow of energy: the power should be constant as x varies in a lossless medium. Because the energy
moves a distance U in unit time, this problem is equivalent to conserving the energy stored in a distance
proportional to U as x varies, ignoring the imaginary part of k. We should be able to separately work
the problem in terms of kinetic energy (energy of fluid motion alone, for the massless membrane case) or
of potential energy (energy in deformation of the membrane), and get the same answer.

For the short-wave region, we found that k = ω2ρ/S, which gives the group velocity

U =
dω

dk
=

√
S

2
√
kρ

(86)

Because S is spatially varying and ω is a constant, we substitute in
√
S

√
ρ

=
ω√
k

(87)

to obtain a relation between U and k that turns out to be proportional to the phase velocity (but only
within the short-wave region):

U =
ω

2k
∝ c =

ω

k
(88)

The kinetic energy of fluid is Ekinetic = 1
2mv2 where m is the effective mass of moving fluid in a distance

proportional to U and v is the rms velocity in that mass of fluid. The effective mass is proprotional to the
2D area with a width proportional to U and a height 1/k (because 1/k is the space constant or effective
depth in the short-wave region). The rms velocity is proportional to the membrane velocity, so we can
treat v as the amplitude of the membrane velocity wave, yielding the kinetic energy relation

Ekinetic = 1
2mv2 ∝ U

k
v2 ∝ k−2v2 (89)

or v ∝ k ∝ S−1 for Ekinetic constant (90)
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The potential energy in the membrane deformation with rms displacement δ is

Epotential = 1
2USδ2 ∝ k−2δ2 (91)

or δ ∝ k ∝ S−1 for Epotential constant (92)

The amplitudes of the displacement and velocity waves must remain in a fixed proportion determined
by ω, so the above results are self-consistent: membrane displacement and velocity increase in proportion
with k as a wave of a fixed frequency travels through the cochlea.

The velocity wave amplitude is related to the velocity-potential wave amplitude via the defining
relation v = −∇φ; the spatial derivative contributes a factor of k to the velocity amplitude, so φ has a
constant amplitude.

The pressure wave p also is spatially differentiated to arrive at a membrane accelerating force; the
space constant 1/k in depth implies an acceleration (and hence velocity and displacement) proportional
to kp, so the pressure wave amplitude must be constant also.

These amplitude solutions for the short-wave case illustrate the reasoning and technique—we assume
the system is lossless and constrain the solution to conserve energy. The corresponding solution for the
more general case follows.

In the lossless region with T = 0 and M = 0, Equation 45 gives a closed-form solution for ω that can
be differentiated to find U :

ω =
√
S/ρ

√
k tanh(kh) (93)

U =
√
S/ρ

2
√
k tanh(kh)

[tanh(kh) + kh sech2(kh)] (94)

To conserve power of the propagating wave, we require Epotential in a distance U to be constant, as
above

Epotential = 1
2USδ2 ∝

√
S/ρ√

k tanh(kh)
[tanh(kh) + kh sech2(kh)]Sδ2 (95)

Substituting in for S = ω2ρ/k tanh(kh) we get the relation between k and δ:

δ ∝ k tanh(kh)√
tanh(kh) + kh sech2(kh)

(96)

To find the amplitudes of the velocity-potential wave and the pressure wave, we need to divide out
the magnitude of a spatial derivative in the y dimension, so the factor is not k as before, but k tanh(kh).
Hence

φ ∝ p ∝ 1√
tanh(kh) + kh sech2(kh)

(97)

In the long-wave region, Equation 96 simplifies to

v ∝ δ ∝ k3/2 ∝ S−3/4 (98)

and Equation 97 simplifies to
φ ∝ p ∝ k−1/2 ∝ S1/4 (99)

Thus, in the long-wave region, the displacement wave amplitude grows more rapidly than k, but does
not grow as quickly with x (with decreasing stiffness) as it does in the short-wave region. That is, the
log-displacement vs. place function has two different slopes on the basal side of the response peak: It is
flatter near the base, where the long-wave result applies, and steeper nearer to the response peak. Finally,
the form of the velocity-potential and pressure wave amplitudes in the long-wave region corresponds to
the solution k−1/2 usually associated with the WKB approximation for one-dimensional problems.
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Gain Control and Tuning Curves
The outer hair cells have been accepted as a source of active energetics in the cochlea. We model their
effect as a negative viscosity, causing waves to be amplified rather than attentuated. But the function
of the outer-hair-cell arrangement is not just to provide gain, but rather to provide control of the gain,
which it does by a factor of about 100 in amplitude (10,000 in energy).

When the sound signal is small, the outer hair cells are not inhibited and they feed back energy. They
reduce the damping until the signal reaching the higher brain centers is large enough. The AGC system
works for sound power levels within a few decades of the bottom end of our hearing range by making
the structure slightly more resonant and thereby much higher gain—by reducing the damping until it is
sufficiently negative in some regions.

Figure 5 shows the sound pressure level required to produce a fixed membrane displacement amplitude
or velocity, compared with the level required to produce a certain increase in the rate of firing of a
single auditory nerve fiber. The data were obtained by Robles and his associates [Robles 85], using the
Mössbauer effect in chinchilla cochlea. Curves such as these are termed iso-output or iso-response curves,
because the input level is adjusted to produce the same output level (response) at each frequency; the
region above an iso-output curve is known as the response area.

The curves show reasonable agreement between neural and mechanical data, implying that the re-
sponse area is already determined at the mechanical level. Without the outer hair cells, the sensitivity is
at least 30 dB less, and the curve tips are much broader [Kim 84]. The sharpness of such tuning curves
(i. e., response area widths of only about one-fourth to one-tenth of the center frequency) often misleads
model developers into thinking that the system is narrowly tuned, when in fact the curves are quite dif-
ferent from transfer functions. As frequency changes, the input level and AGC gains change enormously,
in opposite directions, to keep the output at a constant level. The filter-gain shapes are difficult to infer
from this kind of measurement, but they must be broader than are the iso-output tuning-curve shapes.

Figure 6 shows iso-output curves for a cochlear model composed of a cascade of second-order variable-
Q filters, under two linear conditions (a passive low-gain condition, as in a cochlea with dead or damaged
outer hair cells, and an active high-gain condition, as in a hypothetical cochlea with active outer hairs
of constant gain and unlimited energy), and under the condition of an AGC that acts to adapt the gain
between the two linear conditions in response to the average output level. The curves show that a simple
gain-control loop can cause a broadly-tuned filter to appear to have a much narrower response when
observed with an iso-output criterion; further examples of this effect have been shown by Lyon and Dyer
[Lyon 86].

This neural/mechanical AGC is an intelligently designed gain-control system. It takes effect before the
signal is translated into nerve pulses, just as does the visual gain-control system in the retina [Werblin 73].
Nerve pulses are by their very nature a horrible medium into which to translate sound. They are noisy
and erratic, and can work over only a limited dynamic range of firing rates. It makes sense to have a
first level of AGC before the signal is turned into nerve pulses, because this approach reduces the noise
associated with the quantization of the signal.

Filter Cascades
A cascade of linear filters to model the uni-directional wave propagation in the cochlea can be constructed
using very simple stages, each having only a few s-plane poles (or using digital filters with a few Z-plane
poles and perhaps one or more zeroes at Z = −1 as well). By cascading stages with time-constants
increasing geometrically, a filter structure that scales is the result—a more realistic model would space
the stage time constants disproportionately further apart at the far end of the cascade, modeling the
transition from log to linear frequency mapping toward the apical end of the cochlea.

A cascade of first-order (one-pole lowpass) filters is not a very good model even of a lossy passive
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cochlea, since the gain drops too rapidly (quadratically) at low frequencies (1/|Hi|2 = 1 + f2, with
f = ωτ1).

A cascade of second-order (two-pole lowpass) filters, with a Q value of about 0.7 to 0.9, makes
a fair model of wave propagation in the cochlea, since such filters provide gain slightly greater than
unity for frequencies over a moderate band before rolling off. The response magnitude is given by
1/|Hii|2 = 1 − (2 − 1/Q2)f2 + f4, with f = ωτ2. The quadratic term needs a positive coefficient
(Q2 > 0.5) to get a gain bump.

The resulting pseudoresonance peak is a bit too broad (too low-order)—according to the hydrodynamic
analysis, a response that is flat to second power at low frequencies is needed. A cascade of third-order
filters, made by alternating the first- and second-order stages just discussed, provides the possibility of
tuning up the pseudoresonant peak to be a little sharper, by cancelling the second-power terms of the
first- and second-order stage responses.

The third order stage frequency response, using a ratio of first- and second-order stage time constants
of ρ = τ2/τ1 and with f = ωτ2, is 1/|Hiii|2 = 1+[(1/ρ2)−(2−1/Q2)]f2+[1−(1/ρ2)(2−1/Q2)]f4+(1/ρ2)f6.
The quadratic term may be made to vanish by adjusting the time constants so that ρ = 1/

√
2 − 1/Q2, in

which case the transfer function simplifies to 1/|Hiii|2 = 1+[1−(1/ρ4)]f4+(1/ρ2)f6. To get a gain bump
requires a negative coefficient on the fourth-power term, so we need Q > 1 or ρ < 1 (first-order stage
time constant longer than second-order state time constant) to model an active cochlea. For example,
with Q = 1.2 and ρ = 0.875, the response is flat at low frequencies and provides a gain bump of about
0.13 dB. The width of the gain bump, measured at half height on a log-gain scale, is slighly less than an
octave, or about 0.6 times as wide as the second-order filter gain bump.

Plots of typical gain bumps for the hydrodynamic model, the second-order stage, and the third-order
stage are shown in Figure 7. Apparently the third-order filter provides a very good match to the transfer
functions implied by our hydrodynamic analysis for a cochlea with a massless partition. The second-
order model is the simplest way to get an adjustable gain bump and thereby make a qualitative cochlear
model—it is the basis of the chip we built, and is described in detail elsewhere [Lyon&Mead 88 and
Mead 89].

A geometric cascade of filters of any order will model also the delay of the cochlea. The free parameters
of our model that affect the gain also affect the delay. Perhaps the best way to match models, once the
structure is appropriate, is to match the observed delay of about five cycles for a sinusoid on the cochlear
partition. In the case of third-order stages, the ratio of time constants from one stage to the next needs
to be about 0.99 (i.e., about 70 stages per octave) to get this much delay (somewhat dependent on the
Q and on how the delay is measured). It seems likely that a filter cascade with only half as many stages
and half as much delay would still be a useful model of the cochlea.

Three-dimensional Effects
A three-dimensional analysis of cochlear hydrodynamics is somewhat more complicated, but has been
tackled by various researchers using a variety of approaches. We have a simple way of thinking about the
main 3D effects.

In the long-wave region, wavelengths are long compared to the duct height and width (both about h)
and compared to the width of the flexible partition (b, which is significantly less than h, especially near
the base). In the short-wave region, wavelengths are short compared to these two quantities. In either
of these regions, an equivalent stiffness (and other parameters) for a 2D model may be easily calculated.
However, when the length 1/k is smaller than h but larger than b, things are more interesting.

In the long-wave region, the wave motion is constrained in depth and in width by the duct walls. In
the short-wave region, waves are constrained in width only, since the influence can only reach a distance
1/k beyond the edges of the partition. In between however, the wave is not constrained in either depth
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or width—the influence of the wave spreads out in a circle from the thin ribbon-like partition into the
wide open space of the duct. The result is that the dispersion relation of k versus ω is even steeper than
in the short-wave region (k ∝ ω3 instead of k ∝ ω2), rather than being an intermediate steepness as the
2D analysis would suggest. See Steele 87 for more on 3D solutions.

We interpret the extra width h relative to b near the base of the cochlea as a mechanism for preventing
long-wave behavior. As a result of the 3D structure of the cochlea, the rather clean short-wave region
solution may actually be a better model overall than the more complete 2D solution (except for the
low-frequency asymtotic behavior, where the short-wave solution implies zero delay).

Summary and Conclusions
We hope to convert this rather mysterious demystification into something that could actually be published,
and to expand on our interpretations of cochlear function. Suggestions and criticism toward that end are
welcome.

There are a number of controversies in the field of cochlear function that our models and interpretations
have some bearing on, and we hope to contribute to settling some of them. In particular, let us summarize
a few main points that we would like to expand on in future publications:
1. The cochlea operates mainly in the short-wave region, rather than in the long-wave region.
2. The mass of the cochlear partition is negligible, except perhaps near the base, and the tension of the

cochlear partition is also negligible.
3. The hydrodynamic system of the cochlea is not highly tuned (in the sense of being highly frequency

selective), and the best frequency for a place is quite level dependent.
4. Sharp iso-response tuning curves are the result of an AGC operating in conjunction with a broadly

tuned hydrodynamic system—no “second filter” or other tuned sharpening mechanism is needed to
model cochlear tuning.

5. A bandpass filterbank to model cochlear response ought to be designed as a cascade, rather than as
a parallel bank of independent filters.

6. Nonlinearity in the cochlea is important mainly as an adaptive mechanism—the short-time response
is nearly linear (distortion products in the hydrodynamic system are barely audible under special
conditions).

7. A model of the active adaptive cochlea must be extremely nonlinear over a wide range of signal level,
mainly to effect gain control.

8. In the normally-functioning cochlea, energy travels in one direction—standing waves, acoustic emis-
sions, and reflections may be neglected except in pathologies.
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in the guinea pig using the Mössbauer technique” J. Acoust. Soc. Am. , 72:131–141, 1982.

[Lyon&Mead 88] R. F. Lyon and C. Mead. “An Analog Electronic Cochlea” IEEE Trans-ASSP, 36:1119–
1134, July 1988.

[Mead 89] C. Mead. Analog VLSI and Neural Systems. Reading, MA: Addison-Wesley, 1989.

24



   

Figure Captions

Figure 1. Two snapshots of a traveling one-dimensional wave with damping. Between the two snapshots
separated by a time 1/ω, the wave has changed phase by 1 radian, or moved to right a distance 1/kr,
and has diminshed in amplitude by a factor exp (−ki). For this illustration, k is 1 + i0.1.

Figure 2. A cascade of filters modeling uni-directional wave propagation along one dimension.

Figure 3. Fluid flow streamlines and velocity potential in a pair of ducts separated by a flexible membrane,
for the case kh = 1. Between the long-wave and short-wave regions, the bottom wall of the duct has a
significant but not overwhelming effect on the streamlines of fluid flow. The deflection of the top surface,
corresponding to the displacement wave on the cochlear partition is exaggerated for clarity.

Figure 4. Numerical solutions of k vs. x for two conditions: (1) high-order γ loss only, an ideal passive
condition; (2) γ loss and β gain, an active condition. The real and imaginary parts of k are separately
plotted on a log scale. For the region where ki is negative due to active gain, the log of its absolute value
is plotted; a cusp in the ki curve indicates the transition between gain and loss for the active condition.
The place scale has arbitrary units with 1500 units spanning three decades of characteristic frequency
(dω = 217.15); the horizontal axis may also be interpreted as log frequency (with a fixed place) instead
of as place (with a fixed frequency).

Figure 5. Mechanical and neural iso-output tuning curves, based on data from Robles and his associates
[Robles 85]. The mechanical measurements (amount of input needed to get 1 mm/sec basilar mem-
brane displacement velocity or 19 Å basilar membrane displacement amplitude) were made by measuring
doppler-shifted gamma rays (Mössbauer effect) from a small radioactive source mounted on the cochlear
partition. The neural tuning curve was measured by looking for a specified increase in firing rate of a
single fiber in the cochlear nerve.

Figure 6. Model iso-output tuning curves for linear models (dashed curves) and for a particular nonlinear
AGC scheme (solid curve) that varies the model gain by varying the Q of the cascaded filter stages. The
similarity in the response area shape and width between the active adaptive model and the biological
system (Figure 5) is striking. For this simulation, all filter stage Q values are equal, and are computed
from a feedback gain β that is a maximum value minus a constant times the total output of 100 channels.
The relation of Q values to overall gains and overall transfer functions is discussed in the text.

Figure 7. Plots of log-magnitude gain of (a) a length of active cochlea, according to the hydrodynamic
model, (b) a second-order filter, and (c) a third-order filter adjusted to be flat at low frequency. The
horizontal log-frequency scales are arbitrarily shifted, and the gains are not adjusted to be identical.
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Appendix A — Notation
The following symbols are used more or less consistently in the text:

t = time in seconds (cgs units are used where relevant).
x = the cochlear place dimension (in centimeters), measured from the base.
y = the vertical dimension in a cochlear duct (perpendicular to the partition).
z = the complex variable x + iy that represent place in two dimensions.
h = the height of a cochlear duct, such that y = h at the cochlear partition.
W = a wave, a function of place and time.
A,B = arbitrary constants in solutions to differential equations.
P = a function of y used in solutions to differential equations.
v = (vx,vy) = (u, v) the velocity vector of the fluid.
φ = the velocity potential of the fluid in a duct.
ψ = the stream function of the fluid in a duct.
w = the complex function φ + iψ.
Re[·] = the real-part operator.
Im[·] = the imaginary-part operator.
ω = frequency in radians s−1.
f = frequency in cycles s−1, or normalized frequency.
λ = wavelength in cm (per cycle).
k = wavenumber in radians cm−1.
kr, ki = real and imaginary parts of k.
k∗ = (kr − iki), the complex conjugate of k.
c = the phase velocity ω/k of a traveling wave.
U = the group velocity dω/dk of a traveling wave.
ωN = any conveniently defined measure of natural frequency.
dω = the characteristic distance for geometrically changing ωN .
lf = log (f) is the log of the normalized frequency ω/ωN .
F = force.
m = mass.
a = acceleration.
p = pressure in the fluid (dynes cm−2).
ρ = density of the fluid (grams cm−3).
δ = partition displacement, a one-dimensional traveling wave.
T = partition tension (dyne cm−1).
M = partition mass (gram cm−1).
S = partition stiffness (dyne cm−3, reciprocal of volume compliance).
S0 = partition stiffness at the basal end of the cochlea.
β = partition velocity loss coefficient (units?).
γ = partition bending loss coefficient (units?).
ξ = damping coefficient ki/kr.
ωC = a critical frequency, depending on place, such that damping is large.
xC = a critical place, depending on frequency, such that damping is large.
MC = a critical mass, such that resonance occurs near the critical frequency.
ωh = a characteristic frequency, depending on place, such that kh ≈ 1.
xh = a characteristic place, depending on frequency, such that kh ≈ 1.
s = the laplace transform variable, iω.
Z = the Z-transform variable, exp (iω∆t).
∆t = the sampling period of a discrete-time system.
∆x = the spatial sampling period along the x dimension.
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Ekinetic = the energy of fluid motion in a distance U .
Epotential = the energy of membrane distortion in a distance U .

These standard definitions are included for reference:
e = base of natural logarithms (2.71828...).
i = principal complex square root of −1.
exp(x) = the exponential function ex.
log(x) = the natural logarithm, the inverse function of exp.
cos(x) = the cosine function 1

2 [exp (ix) + exp (−ix)].
sin(x) = the sine function 1

2i [exp (ix) − exp (−ix)].
cosh(x) = the hyperbolic cosine function 1

2 [exp (x) + exp (−x)].
sinh(x) = the hyperbolic sine function 1

2 [exp (x) − exp (−x)].
tanh(x) = the hyperbolic tangent function sinh(x)/ cosh(x).
sech(x) = the hyperbolic secant function 1/ cosh(x).
|x| = the absolute magnitude of the complex number x.
arg(x) = the phase angle of the complex number x.
d, ∂ are names for the operators of differential calculus.
∇, div , grad are names for the vector operator ( ∂

∂x ,
∂
∂y ).
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