
Experiments in Isolated Digit Recognition
with a Cochlear Model

Eric P. Loeb and Richard F. Lyon

Schlumberger Palo Alto Research

3340 Hillview Avenue

Palo Alto, CA 94304

Abstract

We have conducted speaker-independent isolated digit recog-

nition experiments using vector quantized cochleagrams. With-

out the use of time order information, we were able to achieve a

recognition rate of 97.24%. With a modified Viterbi algorithm

we achieved a rate of 98.38%. Since we achieved a 98.05% recog-

nition rate with a scheme that did static pattern matching on

the fist and second time-halves of our utterances, we must call

into question the effectiveness with which the Viterbi algorithm

uses time order information. Our results also lead us to conclude

that future progress may depend on our ability to construct more

sophisticated vector quantizers.

1 Introduction

We have conducted a number of isolated digit recognition ex-

periments in an effort to evaluate the potential of an auditory

model front end. The experiments emphasize non-parametric

approaches and techniques that use little or no time order infor-

mation. We wished to set high performance standards for future

experiments while estimating the relative importance of the var-

ious sources of information in the data.

Although the front end for our experiments is a cochlear model

[Lyon ,821, there is nothing explicitly neural about our tech-

niques. They could be applied to any other vector quantized

representation. Many of the experiments are interesting as tech-

niques for the use of non-parametric statistics in spite of the

shortage of training data. Since every experiment uses the same

training and testing data sets, all the results are directly compa-

r able.

2 General Methods

The first repetitions of the isolated digits in the training sub-

set of the TI Connected Digit Database (sampling rate 20kHz)

were analyzed by our cochlear model. The model produces a

discrete-time 92-channel spectrum, which is down-sampled to 1

kHz and quantized by a standard Euclidean quantizer with 1024

codewords. The quantizer codebook was trained on the entire

corpus using the standard K-means algorithm.

In all the experiments to be described, half of the speakers

were used for training and the other half were used for testing.

Thus the recognition results in this paper are ostensibly speaker-

independent. We can not daim total speaker-independence be-

cause we used both sets of speakers to build our vector quantizer.

Since this caused two of the codewords never to occur in the

training set, the net result may actually be poorer performance

than we would otherwise expect. At any rate, all experiments

used the same training and testing sets, so all results are directly

comparable.

Recognition

Original I 0.95 I 0.80 Method

Time Grouping
Order

Basic Method I
Necessity I

No 94.97% 95.45% 95.29%

No 94.16% 95.62% 96.10%

Conditionals

Ranges 11 94.81% 97.24% 95.94% I No

- 96.27% 94.81% I No

.., .~

Neural Net Model - 93.18% - 1 NO

Time SDlittine: 96.10% 95.94% 96.27% I Some

. ..with Necessity 94.81% 96.43% 97.5G% I Some

. ..with - Ranges - I/ 95.78% 98.05% 97.56% I Some - I

I Viterbi Algorithm 98.38% 94.15% - I Yes I
Table 1: Recognition percentage for 616 test utterances. Group-

ing numbers are the coverage-proportion values from section 5.1

3 Definitions

codeword an integer in [0, B] where B 5 1023. Each codeword

corresponds to some subset of Ss2, and the set of codewords

corresponds to a partition of Sg2.

utterance the sequence of codewords derived from the cochlea-

gram of one of the speakers saying one of the vocabulary

words.

u t te rance histogram a vector g(A), where gm(A) is thenum-

ber of occurrences of codeword cw in utterance A.

guess the index to a vocabulary word. A guess is the result of

some recognition method operating on a test utterance.

guess vector a <vocabulary-size>-dimensional vector of word

log probabilities. If a recognition method generates a

guess vector, then it will a lways output the index

of the most probable word as its guess.

4 The Basic Method

It is useful to consider this simple non-time-order method in

several different ways. A matrix of conditional log probabilities

of observations (codewords) given the word hypothesis is first

generated. Probabilites are estimated from a count of the number

of occurrences of each codeword within all training utterances

of each vocabulary word. Then, for recognition, each word in

the vocabulary is scored by adding the log likelihoods for all

time samples in the unknown utterance; since these scores do

not depend on the order of occurrence of the samples, they are

most easily computed by multiplying the log probability matrix

by the utterance histogram.

27.3.1

CH239S-O/87/OOOO-i13I $1.00 @ 1987 IEEE 1131

Now each codeword, cw, indexes avector ?(cw) in our matrix,

where

?(CUI); = -log Pr[codeword cw I word i]

With this in mind, it is clear that we can form- the same guess

vector by summing the scalar products of each V(cwk) times the

projection of the test utterance histogram onto the unit vector

corresponding to cwk. We will return to this in sections 5.2, 5.4

and 7.

A_nother way to form the same guess vector is to accumulate

the V(cw)’s indexed by each codeword found in sequence in the

test utterance.

Finally, consider an equivalent neural network. Each code-

word corresponds to an input neuron, and each vocabulary word

corresponds to an output neuron. An input neuron fires once

each time its codeword occurs in the test utterance. Input neu-

ron cw is connected to output neuron i by a linear excitatory

synapse of weight ~ (c w) ; Output neurons sum their inputs, and

the number of the cell with the highest value is our guess.

This simple program gives 94.97% correct recognition on the

testing set (see table 1). This implies that the codewords (and

thus the underlying cochleagrams) are doing a good job of acous-

tically separating our vocabulary words.

It is interesting to note that an earlier version of the code-

book, in which the K-means algorithm had not iterated to conver-

gence, gave 94.16% recognition. This indicates that the method

of codebook vector production is an important component of a

quantizer-based system.

5 Simple Variations on the Basic Method

5.1 Codeword Grouping

Let us suppose there are several codewords covering the spec-

tra produced by / s / sounds. Then the majority of the obser-

vations of these codewords will occur in the vocabulary words

containing /s/ sounds. In the task at hand these words are six

and seven. So, if we assign one new number to every codeword,

cw, such that most of the observations of cw occur in the words

six and seven, then this new number should be a good indicator

of the /s/ sound.

To implement this idea we will need a parameter coverage-

proportion. w e will map each codeword, cw, to the set of VO-

cabulary words that account for at least coverage-proportion of

the observations of cw. Next we map these sets to integers (i.e.,

we number them). The composition of these two mappings is

a many to one map from the original codewords to some new

codewords. We then use the new codewords in the basic method.

Note that codeword grouping may make signal reconstruction

impossible.

The results are on the “Basic” row of table 1. The coveruge-

proportion = 0.95 grouping reduces the number of codewords

from the original 1024 to 405. The 0.80 grouping has 313 code-

words. It maps 71 of the original codewords to the set {G ,7}, 39

originals to the set (3 , zero}, and 22 to (1 , 9). Although many

of the sets do not have such obvious phonetic content, most of

the sets that represent large numbers of original codewords do.

Thus we may have found a way to generate phonetically mean-

ingfullabels without imposing our pre-conceptions upon the data.

In the future, we hope to extend this method to the grouping of

sequences of codewords.

5.2 Non-Occurring Codewords (or Necessity)

Our basic method will often guess “zero” when the input is an

“oh”. The reason for this is that the method is one of sufficiency,

in that we have no way of necessitating a /z/ sound before guess-

ing “zero”. Thus we wish to make use of the codewords that do

not occur.

TO do this we will start with the basic method. Then, for each

codeword, cw, tha t does not occur in the test utterance we will

add an inverse of V(cw) (see basic method) to our guess vector.

We inverted V(cw) by subtracting each element from the vector
maximum.

Notice that this method adds a non-linearity to our system.

Our probability estimates given codeword cw are no longer 0

when the number of occurrences of cw equals 0.

If we examine the differences between the “Basic” and “Ne-

cessity” results in table 1, then it appears that this method be-

comes more successful as the number of codewords decreases. If
this were the case, however, we would expect a large improve-

ment in the 0.50 grouping, which has only 156 codewords. The

recognition rates with this grouping were 90.2G% with the basic

method and 91.5G% with the current method. So the utility of

this method seems to depend on the extent to which our code-

words correspond to phonetic units.

It is provocative that this improved method corresponds to a

more realistic neural network model. In real sensory processing

systems, when one finds a neuron that responds to a given event,

one often finds another neuron that is inhibited by that event. A

network model for the necessity method will have two neurons for

each codeword. One neuron fires once for each of its codeword’s

occurrences, and the other fires when the codeword does not

occur.

5.3 Second Order Conditionals

It is incorrect to assume the codewords are independent, but

to do otherwise we must consider higher order conditionals such

as the probability of word X given codeword A , codeword B,
and no codeword C. The number of conditionals of this form is,

however, prohibitively huge. So we will restrict ourselves to pairs

of occurring and non-occurring codewords.

To do this we essentially use the basic method as many times

as there are codewords. (see section 4) We make two matrixes

of log probabilities for each codeword. One is created by and for

utterances in which the codeword occurs, and the other matrix

is for utterances in which the codeword does not occur. For each

codeword, we multiply the appropriate matrix by the histogram

of the test utterance to get a guess vector. These intermediate

guess vectors are then summed to get the final guess vector.

We tried this method with several different groupings. The

0.80 grouping was the only one that did not show improvement.

(see table 1) This method uses far too much memory to be useful,

but the fact that such a simplistic scheme for utilizing the inter-

codeword correlations gave improved performance does suggest

that this is a rich source of further improvements.

It is interesting that the use of a single large matrix containing

one log probability vector (i.e., one row) for every possible pair

of codewords (both occurring and non-occurring) did not work.

Performance with the 0.95 grouping was degraded from 95.45%

(basic method) to 92.8G%. The loss in performance is probably

due to our inability to make a meaningful count of the number

of occurrences of a pair of codewords.

27.3.2

1132

5.4 Several Ranges for Each Codeword

Recall that our neural network model has cells that fire when

their codewords do not occur, and others that fire in direct pro-

portion to the number of occurrences when they do occur. In a

real neural system, we would expect one neuron to fire when the

codeword does not occur, one to be sensitive to a small number

of occurrences, another to f i e in proportion to a larger range

of occurrences, and another that only f ies during large inputs.

In general, such neural pools seem to divide the numbers they

encode into approximate log ranges [Brooks ’86, chapters 3 and

To implement this, we used the basic method with 6 matri-

ces. If we let nk be the number of occurrences of codeword k

in utterance A, then utterance A will contribute to or use the

llog(l+ 2nk)l th matrix for codeword k.

This method makes our systey more non-linear, since (see

section 4) our probability vectors V(cw) are now functions of the

number of Occurrences of CUI as well. So this improvement may

be due to our adding more detail to the conditional probabilities.

Alternatively, it may be due to the fact that we are now taking

into account the average number of occurrences of a codeword

among those utterances in which it occurs. This statistic repre-

sents durational information. We used it in the previous methods

only indirectly.

6 Back Propagation Networks

41.

We wished to compare an actual neural network model to

our other systems [Plaut et. al. ’861. This model, called a back

propagation network, is made up of layers. Each layer has an

input vector, V I , an output vector, Vo, and a matrix mapping

VI to Vo. Each layer functions by mapping V I to Vo with its

matrix, and then running Vo through a component-wise non-

linearity, f (z) = 1/(1 + exp(-z)). The resulting VO is now the

input to the next layer. It is easy to train such a network to

perform any vector transformation.

We began our experiments with a simple 1-layer network that

mapped normalized histograms of utterances to <vocabulary-

size>-dimensional vectors. In order to reduce computation, we

used the 0.95 grouping. As in the basic method, the argument

of the maximum value in the output vector was our guess. For

most of the experiments each input element was the ratio of the

number of occurrences of its codeword to the total number of

occurrences of all codewords. In another set of experiments now

under way we are using 6 input elements per codeword with the

encoding of section 5.4.

The simple 1-layer network converged to 92.86% correct on

the testing set, with over 99% correct on the training set. When

we added a second 11x11 layer which took the simple network’s

output as its input, the new network could learn which words

were easily confused. This caused the recognition rate to go to

100% on the training set, but down to 92.5% on the testing set.

So, this network over-learned the training data, and failed to

generalize.

In order to force some generalization, we used the same data

on a 2-layer network that had a 6-D vector in the middle. This

structure resulted in 1 error on the training set and 93.18% cor-

rect on the testing set (see table 1). Since the large network

over-learned the training data, and the smaller network did not

greatly improve performance, it seems unlikely that back propa-

gation networks can be used to great advantage on this particular

problem.

7 Vector Quantization Methods

Let us suppose we have a speech recognizer box. Its input

is a speech waveform or sequence of observations, which may

be thought of as a vector. Its output is a word, which may be

thought of as a scalar. Thus our speech recognizer is, in fact, a

vector quantizer. Can it be implemented directly as one?

To cut down the pattern space some, we use binary histograms

(i.e., each codeword either occurs or does not occur in the test

utterance) with Euclidean distance, and the standard K-means

algorithm to construct a codebook. A test utterance then maps

to its dosest codebook vector, which in turn tells us which vo-

cabulary word to guess (the one that most frequently mapped to

that codebook vector in training).

In a second experiment codebook vector k was set to be the

centroid of all the training vectors for vocabulary word k. In

another experiment we formed 32 ortho-normal vectors from the

32 codebook vectors of the first experiment. We then used the

basic method by finding the projection of the test utterance on

each of these vectors and summing the product of these numbers

and the appropriate log probability vectors.

In the first experiment, a codebook of size 16 gave recognition

= 66.6%. When size = 32, recognition = 76.5%, and when size

= 128, recognition = 80.5%.

In the second experiment, with one codeword per vocabulary

word, we got 92.69% recognition. This gives a rough idea of the

efficacy of the K-means algorithm in approximating the “correct”

decision boundaries.

The third experiment gave recognition = 70.13%. Since the

codebook vectors we ortho-normalized for this experiment were

the same 32 vectors used in the 32 vector part of the first exper-

iment, it is clear that this method was of no help whatsoever,

8 Time Order Methods

8.1 Time Splitting

As a simple extension of the methods we have tried so far, we

will use the basic method on the first and second time-halves of

the utterances. Thus each test utterance will produce two guess

vectors : one for its beginning and one for its end. The final guess

vector will be the sum of these. In a second experiment, we use

the necessity look-up method (section 5.2) on both time-halves.

In a third experiment, we use the Range method (section 5.4) on

both time-halves.

As in section 5.3, the fact that such a simple method could

provide so much of an improvement (see table l), confirms that

the time order information will be extremely helpful when used

properly. The results of the combined time splitting and code-

word ranges methods are respectable, but they depend far too

heavily on the grouping parameter to be considered useful.

8.2 Viterbi Algorithm

The Viterbi algorithm is well known in speech recognition.

We have applied it using simple iinite-state word models similar

to those used by Bush and Kopec [Bush ’851.

The cost metric used by the Viterbi algorithm in finding a

best model-based segmentation is -log Pr[codeword [state], as

in our basic method. The state tables were initially trained using

segmentations found by Bush and Kopec’s LPC-based recognizer;

they have been retrained and modified to improve performance.

In comparing the fits of the various word models, we used mea-

27.3.3

1133

sures other than total cost (probability), as described elsewhere
[Lyon ’871.

The scores reported in table 1 are the best of several varia-

tions. Other variations on the scoring function, for example using

total Viterbi cost or omitting durational probabilities, resulted

in UP to twice as many errors. We were able to reduce the error

rate from 1.62% to 1.06% using the same codebook but twice as

many training repetitions, but we have not yet tested how this

vmdd effect the performance of our other algorithms.

It is interesting that the finite-state models give aperformance

that is at best only slightly better than the techniques that use

little or no time sequence information. Better techniques for

handling timing are still needed.

9 Conclusions

It is clear that our cochlear model provides an adequate, if not

superior, spectral representation. The unexpectedly good perfor-

mance of the simple methods implies that the cochleagrams are

effectively separating phonetic units. Our back end processing is

not very sophisticated by comparison.

It is important to note that the experiments presented here

are only a fraction of the things we have tried. This lends signifi-

cance to the non-time-order methods that actually worked. They

can be described as an OR operation (section 5.1), a NOT opera-

tion (section 5.2), an AND operation (section 5.3), and a kind of

subset operation (section 5.4). If we suppose that repeated per-

formance of these operations will continue to improve recognition

rates, then we come to the sensible conclusion that we will get

our best performance if we can estimate the continuous density

that gives the probability of each word at each point in the space

in which the utterance histograms reside. Since we always guess

the most probable word, this would simply be a partition of that

space into word-regions. But this is once again a simple vector

quantizer!

This is a problem. The reasoning of section 7 and our ex-

perimental results, and common sense all point to that the best

system being some kind of vector quantizer. However, the results

of our direct experiments were remarkably poor. We may simply

have too little training data, or we may never have enough data

for the K-means algorithm to work well. We suspect that the

crucial difference between a Euclidean quantizer and our basic

method is the weighting the basic method gives to each of the

codewords. This suggests some experiments, but the net impres-

sion one gets is that we will need quantizers that learn the best

metric for performing a given quantization. The neural network

models appear promising in that regard.

We have not yet tried training separate word models for males

and females, which had been found to significantly reduce errors

in the previous LPC-based recognizer. Separate training by gen-

der or by dialect could improve any of the methods reported.

The most difficult remaining question is how to handle time

order information. The proximity of our Viterbi results to the

results that used little or no time order information forces us

to conclude either that time order information is not so useful

as had been thought, or that the Viterbi algorithm with simple

word models does not use it very effectively. We see little differ-

ence between the static “codeword A and codeword B” and the

dynamic “codeword A and then codeword B.” Perhaps a good

means of taking into account the co-occumence of codewords will

necessarily lead to a good means of handling timing informa-

tion. Indeed, does any time-order method not simply amount to

a static pattern matching on a trajectory space?

References

[Brooks ’861

[Bush ’851

[Lyon ’821

[Lyon ’871

Vernon B. Brooks. The Neural Basis of Motor

Control, Oxford University Press, Inc., New

York, 1986.

Marcia Bush and Gary Kopec, ‘‘Evaluation

of a Network-Based Isolated Digit Recognizer

Using the TI Multi-Dialect Database,” Proc.

IEEE IntJ. Conf. on Acoustics, Speech, and

Signal Processing, Tampa, March 1985.

Richard F. Lyon, “A Computational Model of

Filtering, Detection, and Compression in the

Cochlea,” Proc. IEEE Intl. C o d on Acous-

tics, Speech, and SignaJProcessing, Paris, May

1982.

Richard F. Lyon “Speech Recognition in Scale

Space,” Proc. IEEE IntJ. Conf on Acoustics,

Speech, and Signal Processing, Dallas, April

1987 (these proceedings).

[Plaut et. al. ’861 David C. Plaut, Steven J. Nowlan, and Geof-

frey E. Hinton. “Experiments on Learning by

Back Propagation,” Technical Report, CMU-

CS-86-126, Carnegie-Mellon University, June

1986.

Research supported by DARPA contract #N00039-85-C-0585.

27.3.4

1134

