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Abstract 

We have  conducted  speaker-independent  isolated digit recog- 

nition experiments  using vector quantized cochleagrams. With- 

out  the use of time order  information, we were able to achieve a 

recognition rate of 97.24%. With a modified Viterbi  algorithm 

we achieved a rate of 98.38%. Since we achieved a 98.05% recog- 

nition  rate  with a scheme that  did  static  pattern  matching on 

the  fist  and second time-halves of our  utterances, we must call 

into question the effectiveness with which the Viterbi  algorithm 

uses time order  information.  Our  results also lead us to conclude 

that  future progress may depend on our ability to  construct  more 

sophisticated  vector  quantizers. 

1 Introduction 

We have conducted a number of isolated digit recognition ex- 

periments in  an effort to evaluate the  potential of an auditory 

model front end.  The experiments emphasize non-parametric 

approaches and techniques that use little or no time  order infor- 

mation. We wished to set high performance standards for future 

experiments while estimating  the relative  importance of the var- 

ious sources of information in  the  data. 

Although the front end for our  experiments  is a cochlear model 

[Lyon ,821, there is nothing explicitly neural  about  our tech- 

niques. They could be applied to any other vector quantized 

representation.  Many of the experiments are interesting as tech- 

niques for the use of non-parametric  statistics  in  spite of the 

shortage of training  data. Since every experiment uses the same 

training  and  testing  data sets, all the results are directly compa- 

r able. 

2 General Methods 

The first repetitions of the isolated  digits in the  training sub- 

set of the TI Connected Digit Database (sampling rate 20kHz) 

were analyzed by our cochlear model. The model  produces a 

discrete-time 92-channel spectrum, which is down-sampled to 1 

kHz and  quantized  by a standard Euclidean  quantizer  with 1024 

codewords. The  quantizer codebook was trained  on  the entire 

corpus  using the  standard K-means algorithm. 

In all the experiments to  be described, half of the speakers 

were used for training  and  the  other half were used for testing. 

Thus  the recognition results in this paper  are ostensibly speaker- 

independent. We can  not  daim  total speaker-independence be- 

cause we used both  sets of speakers to  build our vector quantizer. 

Since this caused two of the codewords never to occur in  the 

training  set,  the  net result may actually be poorer  performance 

than we would otherwise  expect. At any  rate, all experiments 

used the same training  and  testing sets, so all results are directly 

comparable. 

Recognition 

Original I 0.95 I 0.80 Method 

Time Grouping 
Order 

Basic Method I 
Necessity I 

No 94.97%  95.45%  95.29% 

No 94.16%  95.62%  96.10% 

Conditionals 

Ranges 11 94.81%  97.24%  95.94% I No 

- 96.27%  94.81% I No 

.., .~ 

Neural Net Model - 93.18% - 1 NO 

Time SDlittine: 96.10%  95.94%  96.27% I Some 

. ..with Necessity 94.81%  96.43% 97.5G% I Some 

. ..with - Ranges - I/ 95.78%  98.05%  97.56% I Some - I 

I Viterbi Algorithm 98.38%  94.15% - I Yes I 
Table 1: Recognition percentage for 616 test  utterances. Group- 

ing  numbers are  the coverage-proportion values from section 5.1 

3 Definitions 

codeword an integer in [0, B] where B 5 1023. Each codeword 

corresponds to some subset of Ss2, and  the set of codewords 

corresponds to a partition of Sg2. 

utterance  the sequence of codewords derived from the cochlea- 

gram of one of the speakers  saying one of the vocabulary 

words. 

u t te rance  histogram a vector g(A), where gm(A) is thenum- 

ber of occurrences of codeword cw in  utterance A.  

guess  the index to a vocabulary word. A guess is the result of 

some recognition method  operating on  a  test utterance. 

guess vector a <vocabulary-size>-dimensional vector of word 

log probabilities. If a recognition  method generates a 

guess vector, then it will a lways  output  the index 

of the most probable word as its  guess. 

4 The Basic Method 

It is useful to consider this simple non-time-order method  in 

several different ways. A matrix of conditional log probabilities 

of observations  (codewords) given the word hypothesis is first 

generated.  Probabilites are  estimated  from a count of the number 

of occurrences of each codeword within all training  utterances 

of each  vocabulary  word. Then, for recognition,  each word in 

the vocabulary  is scored by adding the log likelihoods for all 

time samples in  the unknown utterance; since these scores do 

not depend on  the order of occurrence of the samples, they  are 

most easily computed by multiplying the log probability matrix 

by  the  utterance histogram. 
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Now each codeword, cw, indexes avector ?(cw) in  our  matrix, 

where 

?(CUI); = -log Pr[codeword cw I word i] 

With  this in mind,  it is clear that we can form- the same guess 

vector by summing the scalar products of each V(cwk) times the 

projection of the  test  utterance histogram onto  the  unit vector 

corresponding to cwk.  We will return  to this in sections 5.2, 5.4 

and 7. 

A_nother  way to form the same guess vector is to  accumulate 

the V(cw)’s indexed by each codeword found in sequence in the 

test  utterance. 

Finally, consider an equivalent neural network.  Each code- 

word corresponds to  an  input neuron, and each vocabulary word 

corresponds to an output neuron. An input neuron fires once 

each time  its codeword occurs in  the  test  utterance.  Input neu- 

ron cw is connected to  output neuron i by a linear excitatory 

synapse of weight ~ ( c w ) ;  Output neurons sum their inputs,  and 

the number of the cell with  the highest value is our guess. 

This simple program gives 94.97% correct recognition on the 

testing set (see table 1). This implies that  the codewords (and 

thus  the underlying cochleagrams) are doing a good job of acous- 

tically separating  our vocabulary words. 

It is interesting  to  note  that an earlier version of the code- 

book,  in which the K-means  algorithm had  not  iterated  to conver- 

gence, gave 94.16% recognition. This  indicates that  the  method 

of codebook vector production is  an important component of a 

quantizer-based  system. 

5 Simple  Variations on  the Basic  Method 

5.1 Codeword  Grouping 

Let us suppose there  are several codewords covering the spec- 

tra  produced by / s /  sounds. Then  the  majority of the obser- 

vations of these codewords will occur  in the vocabulary words 

containing /s/ sounds. In the  task  at  hand these words are six 

and seven. So, if  we assign one new number to  every codeword, 

cw, such that most of the observations of  cw occur in  the words 

six and seven, then this new number  should be a good indicator 

of the /s/ sound. 

To  implement this idea we will need a parameter coverage- 

proportion. w e  will map each codeword, cw, to  the set of VO- 

cabulary words that account for at least coverage-proportion of 

the observations of cw. Next we map these  sets to  integers (i.e., 

we number them). The composition of these two mappings is 

a many  to one map from the original codewords to some new 

codewords. We then use the new codewords in the basic method. 

Note that codeword grouping may make signal reconstruction 

impossible. 

The results  are on  the “Basic” row of table 1. The coveruge- 

proportion = 0.95 grouping reduces the number of codewords 

from the original 1024 to 405. The 0.80 grouping has 313 code- 

words. It  maps  71 of the original codewords to  the set {G ,7},  39 

originals to  the set (3 , zero}, and 22 to (1 , 9). Although  many 

of the  sets  do  not have such obvious phonetic content, most of 

the  sets  that represent  large  numbers of original codewords do. 

Thus we may have  found  a way to generate phonetically mean- 

ingfullabels without imposing our pre-conceptions upon  the  data. 

In the  future, we hope to  extend this method  to  the grouping of 

sequences of codewords. 

5.2 Non-Occurring  Codewords (or Necessity) 

Our basic method will often guess “zero” when the  input is an 

“oh”.  The reason for this is that  the  method is  one of sufficiency, 

in  that we have no way of necessitating  a /z/ sound before guess- 

ing “zero”. Thus we wish to make  use of the codewords that do 

not  occur. 

TO do this we will start with the basic method.  Then, for each 

codeword, cw, tha t  does not occur  in the test utterance we will 

add  an inverse of V(cw) (see basic method)  to  our guess vector. 

We inverted  V(cw) by  subtracting each element from  the vector 
maximum. 

Notice that this method  adds a  non-linearity to our system. 

Our probability  estimates given codeword cw are no longer 0 

when the number of occurrences of cw equals 0. 

If we examine the differences between the “Basic” and “Ne- 

cessity” results in table 1, then  it appears that  this  method be- 

comes more successful as the number of codewords decreases. If 
this were the case, however, we would expect  a large improve- 

ment in  the 0.50 grouping, which has only 156 codewords. The 

recognition rates  with  this grouping were 90.2G% with the basic 

method  and 91.5G% with the  current  method. So the  utility of 

this method seems to depend on  the extent to which our code- 

words correspond to phonetic units. 

It is provocative that this improved method corresponds to a 

more  realistic neural network model. In real sensory processing 

systems, when one finds a neuron that responds to  a given event, 

one  often  finds  another  neuron that is inhibited by  that event. A 

network model  for the necessity method will have two neurons for 

each codeword. One  neuron fires once for each of its codeword’s 

occurrences, and  the  other fires when the codeword does not 

occur. 

5.3 Second  Order  Conditionals 

It is incorrect to  assume the codewords are  independent,  but 

to  do otherwise we must consider higher order conditionals such 

as the probability of word X given codeword A ,  codeword B, 
and  no codeword C. The number of conditionals of this form  is, 

however, prohibitively  huge. So we will restrict ourselves to pairs 

of occurring and non-occurring codewords. 

To do  this we essentially use the basic method  as  many  times 

as there are codewords. (see section  4) We make two matrixes 

of log probabilities for each codeword. One is created by and for 

utterances  in which the codeword occurs, and  the other matrix 

is for utterances in which the codeword does not occur. For each 

codeword, we multiply the  appropriate  matrix by the histogram 

of the  test  utterance  to get a guess vector. These intermediate 

guess vectors are  then summed to  get the final guess vector. 

We tried  this  method with several different groupings. The 

0.80 grouping was the only one that did not show improvement. 

(see table 1) This  method uses far too much memory to  be useful, 

but  the fact that such a simplistic scheme for utilizing the inter- 

codeword correlations gave improved performance does suggest 

that  this is a rich source of further improvements. 

It is interesting that  the use of a single large matrix containing 

one log probability vector (i.e., one row) for every possible pair 

of codewords (both occurring and non-occurring) did not work. 

Performance with  the 0.95 grouping was degraded from 95.45% 

(basic method)  to 92.8G%. The loss in performance is probably 

due  to our  inability to make  a meaningful count of the number 

of occurrences of a  pair of codewords. 
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5.4 Several  Ranges for Each  Codeword 

Recall that  our  neural network model has cells that fire when 

their codewords do  not occur, and  others  that fire in direct  pro- 

portion to  the number of occurrences when they do occur. In a 

real  neural system, we would expect one neuron to fire when the 

codeword does not occur,  one to  be sensitive to a small  number 

of occurrences, another  to f i e  in proportion  to a larger range 

of occurrences, and  another  that only f ies  during  large inputs. 

In general,  such neural pools seem to divide the numbers they 

encode into  approximate log ranges [Brooks ’86, chapters 3 and 

To implement this, we used the basic method  with 6 matri- 

ces. If we let nk be  the number of occurrences of codeword k 

in  utterance A, then  utterance A will contribute  to or use the 

llog(l+ 2nk)l th  matrix for codeword k. 

This  method makes our  systey more  non-linear, since (see 

section 4) our probability vectors V(cw) are now functions of the 

number of Occurrences of CUI as well. So this improvement may 

be  due  to  our  adding more detail  to  the conditional probabilities. 

Alternatively, it  may  be  due  to  the fact that we are now taking 

into account the average number of occurrences of a codeword 

among  those utterances  in which it occurs. This  statistic repre- 

sents  durational information. We used it  in  the previous methods 

only indirectly. 

6 Back  Propagation  Networks 

41. 

We wished to compare an actual  neural network model to 

our  other systems [Plaut  et. al. ’861. This model, called a back 

propagation  network,  is made  up of layers.  Each layer has an 

input vector, V I ,  an  output vector, Vo, and a matrix mapping 

VI to  Vo. Each layer functions by mapping V I  to  Vo with  its 

matrix,  and  then  running Vo through a component-wise non- 

linearity, f ( z )  = 1/(1 + exp(-z)).  The resulting VO is now the 

input  to  the next  layer. It is easy to train such a network to 

perform any vector transformation. 

We began our experiments with a simple 1-layer network that 

mapped normalized histograms of utterances  to <vocabulary- 

size>-dimensional vectors. In order to  reduce  computation, we 

used the 0.95 grouping. As in  the basic method,  the argument 

of the  maximum value in the  output vector was our guess. For 

most of the experiments  each input element was the  ratio of the 

number of occurrences of its codeword to  the  total number of 

occurrences of all codewords. In another set of experiments now 

under way we are using 6 input elements per codeword with  the 

encoding of section 5.4. 

The simple 1-layer network converged to 92.86% correct on 

the  testing  set,  with over 99% correct  on the  training set.  When 

we added a second 11x11 layer which took the simple network’s 

output as its  input,  the new network could learn which words 

were easily confused. This caused the recognition rate  to go to  

100% on the  training set, but down to 92.5% on the  testing set. 

So, this network over-learned the  training  data,  and failed to 

generalize. 

In order to force some generalization, we used the same data 

on a 2-layer network that  had a 6-D vector in  the middle. This 

structure resulted in 1 error on the training set  and 93.18% cor- 

rect on  the  testing set (see table  1). Since the large network 

over-learned the  training  data,  and  the smaller network did  not 

greatly improve  performance, it seems unlikely that back propa- 

gation networks can  be used to  great  advantage on  this  particular 

problem. 

7 Vector  Quantization  Methods 

Let us suppose we have  a speech recognizer box. Its  input 

is  a speech waveform or sequence of observations, which may 

be  thought of as a  vector. Its  output is  a  word, which may  be 

thought of as  a  scalar. Thus  our speech recognizer is, in  fact, a 

vector  quantizer. Can  it  be implemented  directly as one? 

To  cut down the  pattern space some, we use binary histograms 

(i.e., each codeword either occurs or does not occur in  the  test 

utterance)  with Euclidean  distance, and  the  standard K-means 

algorithm to construct a codebook. A test utterance  then maps 

to  its  dosest codebook vector, which in  turn tells us which vo- 

cabulary word to  guess (the one that most  frequently mapped  to 

that codebook vector in  training). 

In a second experiment codebook vector k was set to  be  the 

centroid of all the  training vectors for vocabulary word k. In 

another experiment we formed 32 ortho-normal vectors from the 

32 codebook vectors of the first experiment. We then used the 

basic method  by finding the projection of the test utterance  on 

each of these  vectors and summing the product of these  numbers 

and  the  appropriate log probability  vectors. 

In the first experiment, a codebook of  size 16 gave recognition 

= 66.6%. When size = 32, recognition = 76.5%, and when size 

= 128,  recognition = 80.5%. 

In the second experiment,  with  one codeword per  vocabulary 

word, we got 92.69% recognition. This gives a rough idea of the 

efficacy of the K-means algorithm  in approximating the “correct” 

decision boundaries. 

The  third experiment gave recognition = 70.13%. Since the 

codebook vectors we ortho-normalized for this  experiment were 

the  same 32 vectors  used in  the 32 vector part of the first exper- 

iment,  it is clear that  this  method was of no help whatsoever, 

8 Time Order Methods 

8.1 Time  Splitting 

As a simple extension of the  methods we have tried so far, we 

will use the basic method  on  the first and second time-halves of 

the  utterances.  Thus each test  utterance will produce two guess 

vectors : one  for its beginning and one for its end. The final guess 

vector will be  the  sum of these. In a second experiment, we use 

the necessity  look-up method (section 5.2) on  both time-halves. 

In a third  experiment, we use the Range method (section 5.4) on 

both time-halves. 

As in section 5.3, the  fact  that such a simple method could 

provide so much of an improvement (see table l), confirms that 

the  time order  information will be extremely  helpful when used 

properly. The results of the combined time  splitting  and code- 

word ranges methods  are respectable, but  they depend far  too 

heavily on  the grouping parameter to  be considered useful. 

8.2 Viterbi  Algorithm 

The  Viterbi algorithm is well known in speech recognition. 

We have  applied it using simple iinite-state word models similar 

to  those used  by  Bush  and Kopec [Bush ’851. 

The cost metric used by  the Viterbi algorithm in finding a 

best  model-based  segmentation  is -log Pr[codeword [state], as 

in  our basic method.  The  state tables were initially trained using 

segmentations  found by Bush  and Kopec’s LPC-based recognizer; 

they have  been retrained  and modified to improve performance. 

In comparing the fits of the various word models, we used mea- 
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sures other  than  total cost (probability), as described elsewhere 
[Lyon ’871. 

The scores reported  in  table 1 are  the best of several varia- 

tions. Other variations  on the scoring function,  for  example using 

total  Viterbi cost or omitting  durational probabilities,  resulted 

in UP to twice as many errors. We were able to reduce the error 

rate  from 1.62% to 1.06% using the same codebook but twice as 

many  training  repetitions,  but we have not yet tested how this 

vmdd effect the performance of our  other algorithms. 

It is interesting that  the  finite-state models give aperformance 

that is at  best only slightly better  than  the techniques that use 

little or no  time sequence information. Better techniques for 

handling timing  are still needed. 

9 Conclusions 

It is clear that  our cochlear model provides an adequate, if not 

superior, spectral representation. The unexpectedly good perfor- 

mance of the simple methods implies that  the cochleagrams are 

effectively separating phonetic units. Our back end processing is 

not very sophisticated by comparison. 

It is important  to  note  that  the experiments  presented here 

are only a  fraction of the things we have tried.  This lends signifi- 

cance to  the non-time-order methods  that actually worked. They 

can  be described as an OR operation (section 5.1), a NOT opera- 

tion  (section  5.2), an AND operation  (section  5.3), and a  kind of 

subset operation (section 5.4). If we suppose that repeated  per- 

formance of these  operations will continue to improve recognition 

rates,  then we come to  the sensible conclusion that we will get 

our best  performance if  we can estimate  the continuous  density 

that gives the probability of each word at each point in  the space 

in which the  utterance histograms reside. Since we always guess 

the most  probable word, this would simply be a partition of that 

space into word-regions. But  this is once again  a simple vector 

quantizer! 

This is a  problem. The reasoning of section 7 and our ex- 

perimental  results,  and common sense all  point to  that  the best 

system  being some kind of vector quantizer. However, the results 

of our direct  experiments were remarkably  poor. We may simply 

have too  little  training  data, or we may never have enough data 

for the K-means  algorithm to work  well. We suspect that  the 

crucial difference between a Euclidean  quantizer and our basic 

method is the weighting the basic method gives to each of the 

codewords. This suggests some experiments, but  the  net impres- 

sion one  gets is that we will need  quantizers that  learn  the best 

metric for performing  a given quantization. The  neural network 

models appear promising in  that regard. 

We have not yet tried training  separate word models for males 

and females, which had been found to significantly reduce errors 

in  the previous LPC-based recognizer. Separate  training by gen- 

der or by dialect could improve any of the  methods reported. 

The most difficult remaining question is how to handle  time 

order  information. The proximity of our Viterbi  results to the 

results that used little or no  time order information forces us 

to  conclude either  that  time order  information is not so useful 

as had  been  thought,  or  that  the Viterbi  algorithm  with simple 

word models does not use it very effectively. We see little differ- 

ence between the  static “codeword A and codeword B” and  the 

dynamic “codeword A and  then codeword B.” Perhaps a good 

means of taking into account the co-occumence of codewords will 

necessarily lead to  a  good means of handling  timing  informa- 

tion.  Indeed, does any  time-order method  not simply amount to 

a static  pattern  matching on  a trajectory space? 
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