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ABSTRACT

We claim that speech analysis algorithms should be
based on computational models of human audition, starting
at the ears. While much is known about how hearing works,
little of this knowledge has been applied in the speech
analysis field. We propose models of the inner ear, or
cochlea, which are expressed as time- and place-domain
signal processing operations; i.e. the models are
computational expressions of the important functions of
the cochlea. The main parts of the models concern
mechanical filtering effects and the mapping of mechanical
vibrations into neural representation. Our model cleanly
separates these effects into time-invariant linear filtering
based on a simple cascade/parallel fllterbank network of
second-order sections, plus transduction and compression
based on half-wave rectification with a nonlinear coupled
tomatio glzirt control network. Compared to other
speech analysis techniques, this model does a much better
job of preserving important detail in both time and
frequency, which is important for robust sound analysis.
We discuss the ways in which this model differs from more
detailed cochlear models.

Introduction
A computational m.odel is an algorithm that mimics the

relevant behavior of the system being modeled; it differs in
this respect from descriptive and analytical models. We
oresent a multi-level sound analysis algorithm which
models the behavior of the cochlea, or inner ear, much
better than previous sound analysis or speech analysis
algorithms; at the same time, it is more computationally
practical than previous cochlear models. Our model can
also be viewed as simply an approach to speech analysis
based on the physiology of hearing, as opposed to the more
popular approaches based on the physiology of speech
production or on mathematical tricks. The resulting
algorithms are suitable for real-time processing of speech
and other sounds, since the computational complexity is
sbxiilar to that of other speech analysis algorithms.

This work is motivated by the observation that there is a
large community of researchers who study hearing, and
that there is much knowledge that has not been applied
seriously by anyone in the speech analysis community; this
would seem to be a good place to look for the kind of
breakthrough that the speech analysis field so badly needs.
As J. B. Alien pointed out, "To understand the hearing
process is to understand the cochlea..." [1]; similarly, to
implement a hearing machine is to implement a cochlear
model.

The specific speech analysis problem that motivates this
work is the inability of all current speech analysis
algorithms to effectively deal with sounds other than pure
simple speech sounds. Because of its superior separation of
sounds along time and frequency dimensions, we fully
expect that the cochlear model will lead to sound analysis
techniques capable of robustly dealing with speech sounds
mixed with various noises, and even mixed with other
speech sounds. The ultimate performance attainable with
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this class of techniques should be similar to human
performance (when integrated into a system that utilizes
the same knowledge sources available to the human on a
given task), but these should not be regarded as techniques
designed to give super-human performance on tasks such
as intelligibility improvement.

The model we present here is really a severe
simplification of the complex behavior of the cochlea,
designed to preserve the aspects most relevant to sound
separation and speech parameterization. The main
simplification is the separation of the interacting behaviors
of the basilar membrane and the organ of Corti into non-
interacting models: simple time-invariant filtering, followed
by an almost trivial detection nonlinearity, and finally a
rather complex nonlinear mechanism that compresses the
huge dynamic range of the mechanical domain into a range
appropriate for neural representation. This last stage
lumps a number of physiological effects, including
mechanical nonlinearities, into one computational
mechanism.

Background and Approach
It has long been recognized that sounds are best

characterized in a "frequency domain", and that the
cochlea performs the job of transforming the incoming
time-domain pressure signal into this other domain. The
exact nature of this frequency domain has not been well
clarified, however. Ohm's acoustic law is particularly
misleading, saying that the ear is insensitive to phase
implies a misunderstanding, or at least some hidden
assumptions, about the nature of the frequency domain.
The concept of short-time spectrum provides some
clarification, but not enough. Concepts such as smoothed
filterbank envelopes, LPC spectra, etc., never quite
managed to capture the right combination of time-domain
and spectral effects to tell the difference between complex
single sounds and separate unfusible sounds with similar
short-time spectra.

To resolve such problems, we have to put much more
emphasis on the time-domain detail that survives beyond
the transformation in the cochlea. We end up needing
algorithms that combine the best features of the old
"place", "volley", and "telephone" theories of hearing. The
neural representation of sounds as patterns of spikes
undergoes extensive processing in the central nervous
system; those further levels of processing, involving pattern
detection by correlation and related techniques, are less
well understood, and will be mentioned only briefly in this
paper.

Many cochlear models have been reported in the past.
Most are models of only the mechanical motion of the
basilar membrane, including nonlinear and active effects,
to various degrees of fidelity. Various approximations to
the wave mechanics of the cochlea are exploited to give
varying degrees of simplification in the models. For
example, the 3-dimensional chambers are modeled in one
or two dimensions, the wavelengths are assumed to be long
compared to lateral dimensions, the longitudinal elastic
coupling is ignored, and the properties of the structure are
assumed to be time-invariant and passive. These
approximations all seem to be reasonably harmless to the



kinds of effects we wish to consider. Another important
approximation that leads to a simple way to evaluate
transfer functions is that the mechanical properties (mass,
stiffness, loss) change slowly enough with distance that no
significant amount of wave energy is reflected [2, 3]. All
that remains is for us to sample the model along the spatial
dimension, and approximate the sections with lumped
parameter filter structures. For more detail on cochlear
mechanical modeling, including recent bibliographies, see
[4,6,6].

Some hearing models include a "second filter" of various
sorts [i, 7], transduction nonilnearities [8, 9], and simple
compression mechanisms [8]. The second-filter can be
included in the filtering part of our model, as long as it is
linear and time-invariant. Almost any detection
nonlinearity is adequate for high-frequency bands (only the
short-time envelope matters), but correct representation
of low frequencies requires that the nonlinearity be
primarily half-wave. Compression mechanisms as simple as
logarithmic point nonlinearities are popular in speech
analysis, but are very inadequate at preserving detail of
high-energy signal regions and suppressing noise in low-
energy regions. Simple per-channel automatic-gain-control
(AGC) mechanisms are a little better, viewed in the time
domain, but still don't adequately handle wide variations of
energy across the frequency dimension. Hence we propose
a coupled AGC that adapts in both time and frequency
dimensions.

Utering
As mentioned above, our model assumes that cochlear

filtering can be modeled as time-invariant and linear; but
there is much evidence that, in detail, these assumptions
are not correct [101. However, for the purpose of speech
analysis, active and nonlinear effects can be accounted for
adequately by lumping them into the compression
mechanism. That is, we assume the purpose of active
mechanisms is to boost the level of weak signals, and the
purpose of nonlinear loss elements is to reduce the
excitation due to strong signals. Other nonlinear effects.
such as cubic difference tones, are assumed to be by-
products relatively unimportant to normal hearing.

We do riot explicitly use a frequency domain, but rather
a place domain. We use a discrete-place approximation to
the physical structure of the cochlea, indexed by channel
number; different channels have different frequency
sensitivities, and can be characterized by filter transfer
functions.

We start by adopting the conventional RLC
transmission-line analogue to the one-dimensional long-
wave hydrodynamic model of basilar membrane motion [2,
3]. For a given frequency, a pressure wave propagates with
wave-length and attenuation given by a complex
wavenumber k, a function of place, without reflection. For
a short section of transmission line, of length dx, with
nearly constant wavenumber k (the reciprocal of Zweig's
parameter c [2]), the complex transfer function to the
pressure wave of the chosen frequency w is:

P = e —ikdx wiUi Ic = _____________
P0 J4+iC)RIQW2

where WR depends on place, and c is a constant that
depends upon how z is measured and upon other
parameters of the RLC model.

For longer sections, we simply integrate the quantity
being exponentiated along the length of the section (i.e.
just average Ic over the section), and, depending on how
physical we want to be, perhaps throw in a factor to
account for conservation of energy [2]. Since Ic depends on
frequency, we do the integration and exponentiation for
many frequencies to plot the transfer function of a section
of the transmission-line model.

The result is a notch filter, which for short enough
sections can be accurately approximated by a single
biquadratic filter transfer function. The notch is formed by
a higb-Q zero pair near a lower-Q pole pair; see figures 1.
and 2.
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Fig. 1. Block diagram of the cascade/parallel filterbank

Now we have a model of traveling pressure waves,
computationally expressed as a cascade of biquad filters,
each modeling a short section of the cochlea. In the
cochlea, the resonance frequencies that determine the
notch locations change approximately geometrically,
starting with 20 kHz at the input end, and terminating at
about 50 Hz. If we look at any representative place on the
cochlea, or at any stage output in our notch filter cascade,
and we ignore frequencies over 20 kHz, we see a very sharp
low-pass function. The cascaded notch ifiters conspire to
make a collection of low-pass filters with very steep rolloff.

To convert pressure waves to basilar membrane motion
or velocity, we still need to add a resonator. In the RLC
transmission line model, we see that the current
(membrane velocity) through a shunt leg is related to the
voltage (pressure) by a single-tuned series resonator. The
resonator is just another second-order filter, with a zero at
DC and a high-Q pole-pair located between the previous and
next .notch filter zero pairs. The composite transfer
function from sound input to velocity at a place is the
"tuning curve" of our model; it is an asymmetric bandpass
function that simultaneously provides good frequency
resolution by having a sharp roiloff, and good time
resolution by being relatively wide bandwidth.

We have defined an unusual general filter structure,
consisting of a cascade of second-order filters plus a
parallel collection of second-order filters connected after
each stage of the cascade. We call this one-input many-
output structure, illustrated in figure 1, a cascade/parallel
filterbank. It has the useful property that the sum of the
orders of the transfer functions from input to outputs
greatly exceeds the sum of the orders of the component
sections. That is, it achieves an economy of computation
by using the seine filter sections in many high-order
transfer functions, by directly modeling the structure of a
sectioned cocblear transmission, line.

Several models of cochlear mechanics include a
"micromechanical" second filter, which is a resonance in
the organ of Corti that contributes a zero pair about an
octave below the basilar membrane resonance [1], We can
easily include this in our computational model by putting
this zero pair in the resonator section; this becomes
another biquad section, if the zero at DC is separately
implemented with a simple flst-order-difference filter
This first-order section can be in front of the
cascade/parallel filterbank, rather than being duplicatedin
each channel.

All of the filters and transfer functions being discussed
can be equally well implemented (computed) with either
continuous-time or discrete-time techniques, in either
analogue or digital technologies. We illustrate them in
continuous-time s-plane notation. for simplicity, since the
pictures of poles and zeroes are identical except for scale
as frequency is changed, as long as is constant. See
figure 2 for s-plane pole-zero plots and transfer functions
with typical parameters.

Of course, with this general filterbank structure, the
frequencies are not confitied to a geometric spacing, and
the Q's need not be constant. For better cochlear
modeling, or to concentrate resolution in the region of
maximum speech information, resonant frequencies should
be spaced further apart, and Q's reduced, near the
extremes of the band of interest.

The main function of this filtering section is to separate
complex mixtures of sounds into high-signal-to-noise-ratio
regions, mainly by separating different frequencies into
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Fig. 2. Pole-zero plots and transfer functions
of filters used in the ifiterbank.

difierent places, but also by preséi-ving enough time
resolution to, for example, separate the responses to
separate pitch pulses. Thus, simultaneous voiced speech
sounds that differ in some formants and in pitch will be
separated into recognizably distinct patterns of activity at
the output.

Detection
The outputs of the filtering model are bandpass

functions of the original input waveform, and thus may be
thought of as zero-mean "carrier" signals. To convert them
to a more useful form, we need to "amplitude demodulate"
them by using some kind of a detection nonlinearity, such
as the diode in an AM radio. Although the exact nature of
the nonlinearity may not be critical, handling this stage
reasonably correctly does require some special attention to
low frequencies, and in the case of discrete-time
implementations, to very high frequencies.

We need to recognize that the neural representation of
signals, which the output of this model is trying to mimic,
has a 'bandwidth at least as high as the full range of voice
pitch, and probably exceeding 2 kHz. This allows us to
easily represent the time structure of formant-frequency
carriers which are AM modulated at the pitch rate. But it
also means that there will be a range of low-frequency
"carriers" that can be synchronously represented in the
output bandwidth; signals in this range are conveyed more
nearly as direct signals than as envelopes, thereby
preserving phase information. If we want to use the same
nonlinearity for these low frequencies as we use for higher
frequencies, and we want the apparent pitch of the result to
agree for a fundamental and for an AM modulated carrier,
then the nonlinearity has to be half-wave. A full-wave or
square-law nonlinearity would preserve the pitch of an AM
modulated signal, but double the pitch of a fundamental;
this would be unacceptable. There is also considerable
physiological evidence for a half-wave detection function in
the hair cells of the organ of Corti [ii]. The exact shape of
the half-wave nonlinearity is not obvious; proposals include
"soft" half-wave [8]. and exponential [9]. We propose to use
instead a simple "ideal" half-wave rectifier, which is very
easy to implement and to understand, and whose "gain" is
independent of the input signal amplitude.

In discrete-time implementations, the use of a
nonlinearity produces harmonics which may lie outside of
the Nyquist bandwidth. The non-bandlimited distorted
signal will alias back into the baseband. Most of the high-
frequency energy from hall-wave rectification is in the
second harmonic, and should be kept in-band by over-
sampling by at least a factor of two. Higher-order
distortion products are less important,

After the detection nonlinearity, we can lowpass to a
bandwidth consistent with the neural domain, and
decimate. If we are not doing binaural processing, 1 kHz is
probably an adequate bandwidth; for the benefit of
nonlinear processing that follows, it would be a good idea to
keep the signal oversampled by a factor of two.

Comession
Consider the problem of producing a high-quality printed

spectrogram, maintaining locally high contrast in the face
of tremendous variations in the average input power level
across time and frequency. This requires compression of a
large dynamic range signal into a halftone pattern; the
problem is very similar to that faced by the human
auditory system in converting sounds to neural firing
patterns. The output rates vary over only about two
decimal orders of magnitude as the input power varies over
twelve or more orders of magnitude from threshold of
hearing to threshold of pain.. What are the properties of
this compression, and what physiological mechanisms
achieve it? These are intriguing questions which presently
have only very sketchy answers.

The concept of an automatic gain control, which controls
the forward path gain of a system in an attempt to keep the
output level nearly constant, has been in use in electronic
systems for a long time. However, no AGC is able to handle
the kinds of signal ranges and achieve the degree of
compression that our ears can, without severely distorting
the signal quality. Another common compression technique
is to use a compressive nonlinearity, such as the logarithm,
to effectively reduce the instantaneous gain applied to
large signals, while increasing the gain applied to small
signals. Applying this to speech spectra gives the familiar
effect of rather flattened peaks and severely unstable or
noisy behavior in the valleys. In printed spectrograms,
peaks are so flattened that it is often difficult to localize
formant tracks more accurately than a few hundred hertz.
What is needed is an adaptation mechanism that can apply
a varying gain across time and frequency dimensions,
maintaining sharp peaks and clean valleys, emphasizing
onsets and offsets, and de-emphasizing overall spectral tilt
and gradual loudness changes.

There are actually a rather large. number of suspected
adaptive mechanisms in the human auditory system,
operating in different domains, at different rates, and
covering different parts of the entire 120 dB range of sound
levels. For example, the gain applied to very low level
signals (0 to 40 dB SPL) may be effectively enhanced by
active mechanisms in the organ of Corti; efferent signals
stimulate the outer hair cells, causing stereocilia to exert
forces, just like muscles, which might. be the source of the
"superregenerative" active mechanisms. At higher levels
the same mechanIsm, operating in a different phase, may
actually reduce the bending of the cochlear partition,
causing reduced sensitivity and lower frequency selectivity.
At very high levels, the stapedial reflex reduces the
mechanical coupling efficiency of the middle ear,.
protecting the cochlea from harmful levels of vibration.
Other mechanisms within the cochlea may include a
varying "DC bias" in the basilar membrane position, caused
by hair cell interactions, that affect the operating point on
their detection nonlinearity; and changes in. the
concentration of K.F ions in the endolymph in the cochlear
duct may change the sensitivity of the inner hair cells.

Perhaps the most important adaptation mechanism in
sensory systems is lateral inhibition. Sensory neurons with
a large response reduce their own gain as well as the gain of
others nearby, by way of lateral distribution of their
outputs to inhibitory synapses on neighboring sensory
neurons [12]. Of all senses, probably only hearing and
vision require mechanisms beyond lateral inhibition to
accommodate their large Input range; for a description of
the role of lateral inhibition in vision, see [13].

The closest model in the literature to the one we propose
is the transduction model of [8], which includes a single-
channel model of the adaptive response of a hair cell and
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its associated primary auditory neuron. A collection of
single-channel AGC's of this sort has the same problem as
the logarithm: peaks are flattened as all channels force
their outputs to about the same level. If we simply take
that model, and add some kind of coupling between nearby
channels so that gains are somewhat interdependent, we
get a reasonably good model. The trouble is that the time
constant of this coupled AGe, like most AGC's, is strongly
dependent on signal level. For the range of signals we need
to deal with, this effect can be reduced enough by using a
controlled-gain element with a super-linear control
function; that is, the gain should be proportional to perhaps
the cube or the exponential of the control signal level.

Instead of a cube-law controlled gain we can use a
cascade of three stages of bilinear elements (simple
multipliers), with possibly separate control signals, time
constants, and degrees of coupling on each. If the slowest
variable-gain stage operates on a slow "syllabic" time scale
and with complete coupling, we can move it out to in front
of the filtering (like the stapedial reflex), reducing the
dynamic range required in the whole system without
introducing much distortion. The next two stages of gain
control can operate more locally and more quickly after
the filtering and detection, in just about any way we choose.
The only hard part is to pick the details. For example, we
still probably need to include a compressive nonlinearity
(limiter) somewhere in the system, so that an unbounded
input will produce a bounded output; a hard limiter may be
Just the thing; or, in Schroeder's model, adding a current-
limiting resistor is the simple solution.

We propose the following discrete-time algorithm as a
straw-man version of the coupled-AGC compression network
(see figure 3).

Oatput = Lirriit[Detect -'B,i Gainc,]
Exces; = Oatput—Target for

Gcsinc,1 Z1[( lec) '1''c,i c( Wtc,j 'Excess)]
= Z1[(1CB) Gain"B(WtB,t'Excess)]

= Z'1[(1—e4)Ghin4—e4(Wt4'Excess)]
Output is the final vector of signals that represent the

high-quality spectrogram, with place index i; Detect is the
vector of outputs of the detectIon model. Excess is a
vector for feedback in the AGC loop; and Target is
approximately the desired output level.

GhrnA is the gain control signal that adjusts the overall
signal level, independent of channel index; this gain can be
moved to before the filtering, with little effect. GamB and

are vectors of two levels of per-channel gains. Wt4
is a vector of weights from all channels to the overall gain;
most likely these weights are all equal. WtB, and Wt,. are
vectors of cross-coupling weights from all channe's to
channel i. The vector inner product function is designated
by dot, The slowest AGC filter time constant is Tie4, for
sampling interval 7'. The faster AGC filter time constants
are T/CB and T/eC.

Limit is the compressive nonlinearity that produces a
bounded output; its maximum output level should be at
least an order of magnitude higher than Target, the
desired average output. With this scheme, an average
output of 0.9Tai-gef is consistent with a steady-state gain
reduction of 1000 relative to the small-signal gain,
corresponding to a 60 dB accommodation of input level.
Another 60 dB of accommodation occurs as the average
output rises to 0.99Target. Peaks localized in time or
place can be very much higher than Target, especially at
onsets before the gain adapts.

Discussion and Conclusion
We have presented a simple and somewhat flexible

speech analysis algorithm based on cochlear models, which
is computationally attractive, If second-order sections are
implemented with five multiplies per sample, and we
sample the speech signal at 20 kHz, then the filtering

Fig. 3. Block diagram of one channel of the
detection and compression models.

complexity is 200K multiplies per second per channel. With
64 channels, the resulting 12.8M multiplies per second can
be handled with one or a few modern chips. The
corresponding data memory of 256 words (by 32 bits, say)
also fits on a chip. Similar numbers apply for the
compression network, depending on what sample rate
reduction is done, and how many nonzero coupling
coefficients are implemented. Only conventional time-
domain signal flow-graph kinds of computations are needed,
so these algorithms are suitable for almost any general-
purpose or special-purpose computing architecture.

The properties of this algorithm are only now being
evaluated, in the context of speech recognition and display.
We expect that the improved relation of frequency-domain
and time-domain information will lead to a more readable
spectrogram-type image of speech sounds, and, in
conjunction with further levels of neural processing, will
eventually achieve a radically better version of real-time
visible speech.

Obviously, this work is very preliminary. We hope by this
publication to interest other researchers in this exciting
new direction in sound analysis.
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