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Abstract 

Scale-space filtering, proposed by Witkin (ICASSP 84) 
for describing natural structure in one-dimensional signals, 
has been extended for application to segmentation and de- 
scription of vector-valued functions of time, such as speech 
spectrograms. By analyzing the rate of change of a vec- 
tor trajectory at many different scales of time-smoothing, 
a tree of natural segments can be constructed. At various 
levels in the tree (i.e., at various scales), these segments 
are found to agree well with the kind of linguistically and 
perceptually important segments that spectrogram readers 

use to describe sound patterns of speech. Scale-space seg- 
mentations of cochleagrams (spectrograms based on a com- 

putational model of the peripheral auditory system) have 
been experimentally applied to word recognition. Recogni- 
tion using fixed-scale segmentations with finite-state word 
models and a Viterbi search has led to speaker-independent 
digit recognition accuracies of greater than 97%, about the 
same as in tests with non-segmented cochleagrams. More 
complex recognition algorithms that use the segmentation 
tree are being developed, and scale-space experiments with 
connected digits and sentences are also underway. 

1 Introduction 

Before a speech signal can be recognized, it must be an- 
alyzed into a form suitable to the recognition algorithms. 
Most current systems use a simple sequence of frames (spec- 
trum vectors, feature vectors, or vector quantization in- 
dices) as the representation to do pattern matching on, us- 
ing a dynamic programming algorithm or similar matching 
approach. An approach that was popular ten years ago was 
to first do “segmentation and labelling”, so that the recog- 
nition system could work on a sparser, more symbolic rep- 
resentation, applying more general kinds of knowledge than 
templates. This approach has been plagued by the difficulty 
of getting the right segments-any segmentation algorithm 
will occasionally either miss segments or split segments or 
both. The “correct” segmentation depends on the inter- 
pretation made by higher-level models, and is not always 
apparent from the input signal The techniques presented 
in this paper are an attempt to find a lattice of alternative 
natural segments in a sequence of feature vectors, so that 

higher levels of knowledge can be successfully applied to 
the recognition problem. 

Witkin’s “Scale-Space Filtering” technique [l] provides 
a structured description of a signal at multiple scales. The 
structure chosen is a tree of segments, with segment bound- 
aries representing supposed discontinuities in the signal. 
Since continuity of sampled signals is not defined, bound- 
aries are placed at local maxima in the rate of change of the 
signal. But since rates of change are ill-defined, a space of 
different smoothing scales is explored, resulting in bound- 
aries that exist over a limited range of scales, thereby in- 
ducing a tree of segments dividing into subsegments. 

The segmentation tree appears to be an important inno- 
vation that will greatly help the acoustic-phonetic approach 
to speech recognition, and will also bring that approach into 
closer contact with statistical signal processing and pattern 
matching approaches. The segments provide natural units 
on which feature extractors can operate (i.e., they delimit 
reasonable intervals over which to measure features that 
characterize segments, rather than isolated spectral slices). 
The tree gets around the classic problem with segmenta- 
tion by putting both too-coarse and too-fine segments to- 
gether in a unified structure at different levels, letting the 
higher knowledge sources find the segments that they need 
to match a model. 

We have implemented an interactive segmentation ex- 
aminer in the ISP signal processing environment. so that 
the user can explore the segmentation tree and see when 
enough information is apparent to read words from the 
picture. For this purpose, each segment is described by 
the average vector within that segment of the original, so 
that a piecewise-constant approximation results; piecewise- 
linear and piecewise-parabolic approximations may better 
encode relevant transition structure, and are also being ex- 
perimented with. Optionally, each segment’s average spec- 
trum vector can be vector quantized, resulting in a truly 
compact symbolic representation of the utterance that is 
reasonably adequate for recognition. 

Finite-state word models similar to those used by Bush 
and Kopec [2] are used as the initial higher-level model of 
pronunciations. Recognition experiments with very sim- 
ple matching algorithms give encouraging results of around 
98% correct on speaker-independent isolated digit tests. 
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Figure 1: Scale-space segmentation of the isolated digit “seven”. The original cochleagram (top) is 

smoothed and differented to form its rates of change at various scales (second from top, plotting 
high rates of change as dark, from finest scale at bottom to coarsest scale at top); curve shapes 
reflect the causal smoothing filters. Local maxima in the rate of change at any scale are tracked 
back to the finest scale, yielding a set of boundaries that persist to various different scales (third 

from top). A reconstructed cochleagram (bottom) is made by averaging the spectra within 
segments (delineated by boundaries that persist to at least scale 6 in this example); notice that the 

final “N” sound is not resolved at this scale. 

2 Scale-Space Overview 

\Vitkin used zero-crossing of the second derivative (i.e., 
minima and maxima of the first derivative) of scalar-valued 
signals to segment them. The technique is generalized to 
vector-valued signals by using peaks of the magnitude of 
the vector derivative. A cascade of vector time-domain 
smoothers (first-order recursive filters) is used to get vec- 
tor derivatives at a sequence of scales. A peak in a rate of 
change at any scale is tracked back through corresponding 
peak; at finer scales to find the underlying boundary. All 
computations have been implemented within the ISP/SRL 
Ggnal processing environment [3] on the Symbolics lisp ma- 
chine. 

Figure 1 shows a typical isolated digit cochleagram along 
with a 2D plot of its rate of change vs. scale, a plot of 
the boundaries that correspond to the segmentation tree 
induced thereby, and a reconstructed segmented cochlea- 
gram at a particular scale (scale 6, with smoothing time 
constant of about 24 msec). At this scale, most segments 
correspond quite well to the usual phonemic interpretation. 

3 Vector Quantized Cochleagrams for Non- 
Parametric Speech Recognition 

For recognition of isolated digits from cochleagrams, 
we have used techniques based on vector quantization of 
cochlear spectrum slices; results are reported elsewhere in 
this proceedings [4]. To incorporate scale-space segmenta- 
tions, we have so far experimented with only very simple 
techniques-in particular, we represent the spectral infor- 
mation in each segment only by the vector quantized aver- 
age spectrum over the segment, using the same codebook 
that was used in the non-segmented experiments. 

For recognition with finite-state models, we use a Viterbi 
algorithm constrained to consider state transitions oniy at 
segment boundaries. The same algorithm works with either 
segmented or non-segmented data, by accepting run-length 
coded vector quantization index sequences as its input; with 
scale-space segmentation, each segment in a particular seg- 
mentation is simply converted to a run of a constant index. 

The cost metric used by the Viterbi algorithm in finding 
a best model-based segmentation is a minus log likelihood 
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of occurrence of a codeword given the state. The state 
tables were initially trained using segmentations found by 
a previous-generation LPC-based recognizer; tables have 
been retrained and models modified to improve performance. 
In comparing the fits of the various word models, measures 
other than total cost (probability) were used to advantage. 
In particular, it was found that an average of the within- 
state time-average costs in each model gave much better re- 
sults (by putting more relative weight on shorter segments). 

It was also found that adding in a minus log likelihood met- 
ric of a coarsely quantized state duration with a weight of 
about one-third gave further improvement; duration his- 
tograms were also bootstrap trained from the Viterbi fits. 
These measures are not exactly optimized by the Viterbi al- 
gorithm, and this is not a very good way to use durational 
information, but the results are still not bad. 

In order to get good recognition results, we found it 
necessary to smooth the codeword distributions for each 
state, thereby avoiding pathological performance due to en- 
countering codewords that were not seen in training. Very 
little smoothing was needed-we used a gaussian blur for 

each codeword with a standard deviation of only one-third 
the distance to its nearest neighbor codeword (using eu- 
&dean distances between codewords in the pattern space 
of cochlear spectra). 

4 Experiments, Results, and Discussion 

Initial experiments have used the weak technique of 
throwing out the segment tree and considering only the 
particular segmentations obtained by fixing the scale at dif- 
ferent levels. The family of segmentations with scales from 

6 to 24 msec (smoothing time constant before derivative) 
yield segment sequences that can be recognized about as 
well as the unsegmented originals (less than 1% error rate 
in multi-speaker tests, 2% to 3% in speaker-independent 
tests). Segment lengths average about triple the smooth- 
ing time constant, so are typically 18 to 72 msec at these 
scales; many digits are recognized correctly at higher scales, 
but error rates increase rapidly as important boundaries 
disappear. 

Many experimental variants and retrainings on the ba- 
sic weak technique have been tried, in an attempt to find 
conditions under which the coarser segmentations would 
yield accuracies significantly better than the finer segmen- 
tations. In the best results with testing on the same data 
as training (clearly not a fair test), scale 3 (8.5 msec) made 
fewer errors (a single error in 1232 tokens in the best case) 
than scales 2 (6 msec) and higher scales. In most other 
cases, the errors increased monotonically with scale. 

The results of the weak technique can be combined by 
letting different scales vote. If the criterion is best two-out- 
of-three at scales 2 through 4, then no errors are made on 
the training set of 1232 tokens. With durational informa- 
tion omitted, our best results are 3 errors in 1232, either at 
scale 3 or by various multi-scale voting schemes. 

The system performance has been improved by bootstrap 
retraining the state statistics from the system’s own best 
match segmentations, so it may be unfairly over-trained on 
the training set. 

Fair experiments on additional data are in progress. Us- 
ing half of the TI training talkers for training and half for 
testing, the best results so far are 12 errors in 616 (1.94% 
error) for training on the second half of the talkers (alpha- 
betically) and testing on the first half, or 18 errors (2.92% 
error) for training on the first half and testing on the sec- 
ond half; on this latter condition but without scale-space 
segmentation, only 10 errors (1.62%) were made [4]. 

A problem with all of these tests is that the codebook 
was trained on all talkers, and without segmentation. In ex- 
periments trained with half the talkers, several of the code- 
words are never seen. Better results would be expected by 
using a codebook trained only on segment average spectra 
from the training talkers. 

Better results are also expected from using both first 
and second repetitions of digits from all the talkers-the 
scale-space segmentations of the second repetitions are not 
done yet, but experiments with unsegmented cochleagrams 
gave much lower overall error rate when the second repeti- 
tions were included in the training and testing. The second 
repetitions apparently have more variability and perhaps 
informality than the first, since in test with both reps, the 
second reps cause twice as many errors as the first reps 
(totalling only 1.06% error in speaker-independent mode). 

Expanding the tests to train on the entire TI training 
corpus and test on the testing corpus may actually further 
improve the accuracy, since twice as many training talkers 
will be represented. 

5 Better Recognition Approaches 

To fully take advantage of scale-space segmentation, 
better techniques are obviously required. The use of vector 
quantization, which is convenient in allowing simple non- 
parametric statistical approaches, may not be an appropri- 
ate way to take advantage of the extra structure provide by 
scale-space techniques. Explicit segment characterization 
by features may be a better alternative, and is certainly 
facilitated by the segment tree. 

Constraint-based grammars to describe possible ways 
of putting segments together into words, based on compat- 
ible features [6], could be applied to parse the segment-tree. 
Experiments along these lines are just beginning, in collab- 
oration with researchers at Xerox and MIT. 

6 Training Issues 

All of the recognition experiments so far have relied 
on the best model fits, determined by a Viterbi search, of 
a previously trained recognizer to provide labelled train- 
ing data. Retraining a recognizer based on its results has 

provided a performance improvement in most, but not all, 
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cases. Many errors occur’with utterances that do not pro- 
vide very good matches to any of the models, and retraining 
on these simply reinforces the problem in some cases. In a 
few cases we have hand-modified data structures to provide 
better fits within the training data, with limited success. A 
good corpus of hand-marked training data could provide 
further improvement, or perhaps a Baum-Welch algorithm 
or similar technique could be used to optimize the models. 

7 Scale-Space Filtering Details 

The scale-space filtering implementation used in this 
work includes a novel filter structure for approximating a 

sequence of derivatives at increasing scales. Each stage of 
smoothing is a single-pole lowpass filter with unity gain at 
DC, yielding a delay equal to the smoothing time constant. 
Each vector lowpass filter simply filters the components of 
the vector independently (the 92 frequency channels of the 
cochleagram). These stages, with time constants increasing 
by a factor of fi per stage, are cascaded to yield a succes- 
sion of increasingly smooth versions of the original signal. 
Each derivative is then taken as a simple difference across a 
stage, as shown is Figure 2; i.e., the filter stage delay is used 
as the time difference, yielding a transfer function with a 
zero at DC and a bunch of poles on the real axis. Deriva- 
tives at larger scales are effectively measured across larger 
time differences, so that the magnitudes of the derivative 
signals are not decreasing in inverse proportion to the scale, 
as they would be for a fixed time difference. 

Vector Input Signal 
I 

Vector Derivatives 
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Single-Pole H 
Vector 
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, 
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Scale 3 

Figure 2: 1Iulti-scaie derivative filter structure. 

-This implementation has proved to be better in terms 
of roundoff noise amplification than other approaches that 
were tried, such that spurious local maxima to not occur. 
The cascade structure is also similar to models we have used 
for the cochlear wave propagation structure and for neural 

correlator delay lines. For any of these applications, the 
cascade structure provides the desirable feature that the 
characteristic time scales of the outputs are monotonically 
increasing, even if the inaccurate component values are not, 
as in analog implementations or neural wetware. 

8 Conclusions 

It had been hoped that the segmentations found by 
scale-space methods at fairly coarse scales would lead to im- 
proved recognition by eliminating the typical errors make 
by the Viterbi search-namely, allowing some model states 
to fit extremely short stretches of the unknown input. In 
fact, the coarse segments do help some in this direction, 
but the same problem was essentially solved without seg- 
mentation by weighting all within-state time-average costs 
equally, rather than in proportion to duration as is stan- 
dard. On the other hand, the extremely data-compressed 
segmented representations (about 200 bits per second for 
scale 6 to 800 bits per second for scale 2) led to recogni- 
tion accuracies almost as good as the unsegmented data, 
indicating that information is being fairly well preserved 
by these methods. 

The power of the scale-space techniques should be fur- 

ther enhanced by describing trajectories within segments 
as low-order polynomials, rather than as constants (zero- 
order). Then features such as formant tracks and time 
patterns can bc extracted from these smooth trajectories, 
probably much more easily than from the original data. 
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