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Chapter 1 

Introduction 

Man has wondered how the human mind works for as long as history has 

been recorded. It is only in the last century that scientists and engineers have 

seriously begun to focus on the mechanisms that underlie human thinking and 

perception. The way that people perceive their environment has been a mystery 

that we are just beginning to unravel. 

Scientists have seriously studied our hearing mechanism for approximately 

100 years. While we are very knowledgeable in some areas of acoustics and hearing, 

in other areas we are just beginning to understand the amazing complexity and 

capabilities of the auditory system. One of these capabilities is the ability of people 

to listen to one person speaking in the presence of other speakers. 

This thesis is concerned with how a person can listen to one person speaking 

in the presence of an interfering talker using a monaural recording of the conversa­

tion. Of course people have two ears, and the directional capabilities that a person 

gains from using two ears to focus on one talker are very important. However, 

even using only one ear, a person's capability to focus on a single sound is still far 

beyond what is achievable with today's technology. 

This thesis represents an important step towards an understanding of how 

the auditory system accomplishes this selective listening task. The theory and 

models that are discussed in this thesis could not have been developed without 

relying on the large body of auditory literature. It is my hope that students of 

audition will use the knowledge in this thesis to continue to build and increase our 
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1lllderstanding of the mechanisms and inner workings of the auditory system. 

1.1 Problem Statement 

1.1.1 Definition of Terms 

The popularity of computers coupled with the possibility of communicating 

with a machine through speech input and output has made speech recognition 

a popular and growing field. Speech scientists, engineers and other professionals 

have been working on speech recognition and synthesis for many years. 

The goal of speech recognition is to transform the recorded signal of a person 

speaking (a sequence of numbers which represent the pressure variations in the 

air) into the text which represents what was spoken. Speech understanding is 

concerned with how a computer can comprehend the meaning of what was said 

by a speaker and make an appropriate response. 

Since the late 1970's, speech enhancement has been a rapidly developing field 

of study. "Thus the main objective of speech enhancement is ultimately to improve 

one or more perceptual aspects of speech, such as overall quality, intelligibility, or 

degree of listener fatigue" [Lim 1983]. A related goal is speech restoration which is 

concerned with processing a speech signal in noise to compute an estimate of the 

speech signal which is as close as possible to the original isolated speech signal. 

A new field of sound separation is concerned with the processing of an acous­

tic signal which is a combination of different environmental s01lllds, and the trans­

formation of this signal into an internal representation that can be used to recog­

nize the different sounds that are present. This writer defines sound separation as 

'the processing of an incoming acoustic signal which assists in the recognition of 

each of the s01lllds that are present in the listener's environment'. 

Sound separation is different from speech restoration. In attempting speech 

restoration, one may not be able to accurately estimate the spectrum of the speech 

signal because the backgro1llld noise is too loud. A very loud background noise 

which lasts for a short period of time may make it impossible to accurately estimate 

the speech signal during that time. However, it does not necessarily mean that a 
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L 
sophisticated recognition system will not be able to recognize what has been said. 

Contextual information from surrounding words, along with timing information of" 

how long the noise masked the speech signal may allow such a recognition system 

to continue to work even when speech restoration is impossible. 

What is important in the preceding "example is that the processing system 

know that the desired signal has been masked, and to do the best that it can given 

the circumstances. Sound separation is concerned with the interpretation of the 

incoming signal, and determining which parts of the sound signal were generated 

by which sound sources. Sound separation consists of accurate estimation of the 

speech and interfering signals whenever possible, and using interpolation and other 

mechanisms when it is not possible to obtain reliable estimates. 

Sound separation is concerned with the accurate estimation of each of the 

sounds present in the environment. Sound separation is also concerned with the 

accuracy of each of the spectral estimates, since this information can be very useful 

to a system concerned with recognizing what sounds were said. Although sound 

separation may try to achieve accurate spectral estimates of each of the sounds 

present, the more practical current goal of sound separation is to assist a sound 

recognition system in interpreting incoming sounds. 

1.1.2 Need for Sound Separation 

In most environmental conditions, the sound that a computer records will 

contain not only the speaker's voice, but other sounds that are also present. Many 

of today's speech recognition systems are based on matching spectral templates 

of the input signal with those stored in the recognition system. If other sounds 

are present besides the person speaking, then the spectral representation of the 

incoming sound will be a combination of the spectrum of the person speaking and 

of the interfering sound. The spectral distortion caused by the interfering sound 

will cause the speech recognition performance to decrease. 

The desire to use speech recognition systems in environments where there are 

background noises has generated an interest in how computers can recognize speech 

sounds in the presence of other interfering sounds. Although it is desirable to 
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eliminate the interfering sounds from the listening environment so that a computer 

may more easily recognize incoming speech, it is not always practical or possible to 

pursue this option. In many situations, external noises will be present that cannot 

be eliminated. Unless one requires that the speech to noise ratio be extremely high, 

computers will be faced with the problem of interpreting incoming speech in the 

presence of other interfering sounds. Sound separation is therefore an important 

issue if speech recognition is to become a viable mode of communication with 

computers. 

Although it is desirable to build a speech recognition system that can func­

tion in the presence of interfering sounds, it has been hard enough t.o build a 

recognition system .that works in a quiet environment. The recognition of speech 

is a difficult task and has had only limited success over the past decade. This 

difficult problem is made even harder when other sounds are present. The ability 

of the human auditory system to recognize sounds in either a quiet or a noisy 

environment is still far above the performance of any computer. 

In an effort to improve recognition performance, recent research has focused 

on how the human auditory system works. It is hoped that if one models the 

algorithms used by the human auditory system, the computer's performance can 

approach the level of a human listener. 

To understand how people separate sounds and how the auditory system 

functions is a challenging and fascinating subject. There is an overwhelming vol­

ume of information about the human auditory system which needs to be put 

together into a conceptual framework. The puzzle of how sounds are separated 

and interpreted in the auditory system will be solved only by the steady inquiries 

that researchers will continue to make in years to come. The superb ability of 

the auditory system to interpret incoming sounds challenges research scientists 

to understand the mechanisms that allow people to hear so well, and to use this 

understanding in the construction of machines that recognize sounds. 
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1.2 Relationship of Speech Enhancement to Sound 
Separation 

Speech enhancement is concerned with making an incoming signal that 

contains speech plus interfering background noise more intelligible. The goal is to 

process the speech signal which is not very intelligible, and make it more intelligible 

for a person listening to the processed output sound. 

What algorithms can one use to process speech corrupted by an interfering 

sound to make the output more intelligible to a listener? The basic approach taken 

by people working in speech enhancement is to compute an estimate of the speech 

signal, and to resynthesize this estimate for a person to listen to. If the estimate 

of the speech signal is very accurate, then when the estimate is resynthesized, it 

will sound like the original speech before the addition of the interfering signal, and 

will therefore be more intelligible than the speech plus noise case. 

This section will briefly review the different techniques that have been pre­

sented in the literature on how to estimate the speech signal's spectrum in the 

presence of interfering background noise. This section makes the important point 

that speech enhancement techniques are not capable of handling the masking of 

one person speaking by a nonstationary background noise (such as another person 

speaking). 

Speech enhancement techniques can enhance speech only in a limited class 

of background noise signals. A mechanism is needed to separate speech from 

interfering signals that are more complex than stationary background noises. That 

mechanism will be provided later in this thesis when the pro~essing of the human 

auditory system will be discussed. 

1.2.1 Speech Enhancement Techniques 

Many current speech enhancement systems have tried to increase the intel­

ligibility of a speech signal that has been corrupted by an interfering noise source. 

The incoming degraded speech is processed and an estimate of'the speech signal's 

spectrum is computed. This estimated speech spectrrun is used to resynthesize 
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a waveform which is .then played to a human listener to determine whether the 

processed speech is more intelligible than the degraded speech. 

A good review of the different speech enhancement techniques in the lit­

erature can be found in Lim [1983]. This section will briefly review some of the 

major approaches to speech enhancement. The different techniques used for speech 

enhancement are listed below: 

1. Speech Spectrum Estimation through Noise Subtraction 

The major techniques which use subtraction of the noise signal are 'power 

spectrum subtraction' and 'correlation subtraction'. [Nawab et. al. 1981, 

Peterson and Boll 1981, Boll 1979, Berouti et. al. 1979, Lim 1978] In power 

spectrum subtraction, it is assumed that the noise's power density spectrum 

is known beforehand. This technique can be applied when the background 

noise power spectrum is stationary, and can be measured when the person 

is not speaking. This knowledge allows the noise power spectrum to be 

subtracted from the total power spectrum to yield an estimate of the speech 

power spectrum. 

The spectral subtraction technique is applicable only in situations where the 

noise spectrum is constant. If the spectrum of the noise changes over time, 

these changes will result in corresponding errors in the estimation of the 

speech signal. Lim [1979] has shown that spectral subtraction techniques 

result in a higher signal to noise ratio, improved speech quality, but demon­

strated no increase in the intelligibility of the speech signal. 

2. Speech Enhancement of Voiced Speech using Periodicity Information 

This technique makes use of the periodicity of voiced speech to separate the 

speech from the noise. [Hanson et. al. 1983, Parsons 1976, Lim et. al. 

1978] In this situation, the noise spectrum need not be stationary, and may 

be either nonperiodic or periodic with a different period of repetition from 

the periodic speech signal. Two different techniques used for estimating the 

speech spectrum are 'adaptive filtering' and 'harmonic selection'. In adaptive 

comb filtering, the period of repetition of the voiced speech is estimated, 
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and the speech plus noise is passed through a comb filter that enhances 

frequencies near multiples of the fundamental frequency and suppresses other 

frequency regions (which are not multiples of the fundamental frequency of 

the voiced speech). The output' from this adaptive comb filter is the enhanced 

speech signal. In harmonic selection, first the period of repetition of the 

voiced speech is estimated, and then the spectral amplitude of harmonics of 

the fundamental is estimated and used for the resynthesis of the enhanced 

speech. 

Both adaptive comb filtering and harmonic selection rely on the periodicity 

of the voiced speech for enhancement. This method cannot enhance nonpe-

. riodic speech in a background noise, since there is no periodicity information 

present in nonperiodic speech. These methods typically compute the period 

of repetition of the speech signal using noise-free speech. Since the pitch 

has been estimated with reasonable precis,ion and reliability from noise-free 

speech, these techniques can focus on how intelligibile the enhanced speech is 

with correct pitch information. By using an 'accurate' estimate of the pitch 

track from the noise-free speech, an upper limit to the enhanced speech's in­

telligibility can be measured (since errors in the pitch will result in mistakes 

in the estimation of the speech signal). The results of the adaptive comb 

filtering show that the signal to noise ratio increases, but the intelligibility 

of the processed speech decreases as the filter length increases (from 3 te 13 

pitch periods) due to the nonstationarity of the speech signal [Lim 1978a]. 

3. Speech Estimation using an All Pole Model of Speech 

This technique of speech enhancement consists of estimating the parameters 

to an all pole model of the speech signal, followed by the resynthesis of the 

speech signal from these parameters. [Lim and Oppenheim 1979, Grenier 

et. al. 1981, Lim 1978] The estimation techniques used to estimate the pa­

rameters of the all pole speech model are maximum likelihood estimation, 

minimum mean squared error estimation, and maximum a posteriori estima­

tion. One major assumption in th.e parametric estimation techniques is that 

7 



the backgrOlUld must be white gaussian noise. It is claimed that this does 

not result in any restrictions since the noise can be whitened by passing the 

speech plus noise through a filter which will whiten the noise [Lim 1978]. 

However, in order to whiten the noise, the noise spectrum must be known 

beforehand which results in the same stationary noise condition discussed 

under the noise spectrum subtraction technique. The results of using an all 

pole model to enhance speech in a white background noise environmerit show 

that the speech quality is improved at various signal to noise ratios, but no 

claims of improved intelligibility of speech are made [Lim 1983]. 

1.2.2 Limitations of Speech Enhancement Processing 

In some situations, there is so much interfering noise that people have ·trou­

ble understanding what is being said. The objective of speech enhancement is to 

process the incoming signal so that people are better able to understand what is 

said. Many speech enhancement systems have tried to increase the intelligibility 

of a speech signal that has been corrupted by an interfering noise source. The 

incoming degraded speech is processed, an estimate of the speech signal is com­

puted, and the speech signal is then resynthesized and played back to a human 

listener to determine whether the processed speech is more intelligible than the 

degraded speech. 

Current speech enhancement techniques are designed to enhance the speech 

signal by using some acoustic property which differentiates the speech from the 

noise. Assumptions typically made are that the noise is stationary (which allows 

for spectral subtraction of the noise from the total signal) or that the speech is 

periodic and the noise is not (enabling the amplitude of the. speech harmonics to 

be estimated). These assumptions limit the complexity of the sound separation 

task, and focus on the acoustic differences between the speech signal and the noise 

. signal for the estimation of the original speech parameters. 

The speech enhancement techniques that were discussed earlier are appli­

cable only in certain situations. The sounds to be separated must differ along 

some dimension so that a technique can be developed to exploit this difference. 
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Speech enhancement techniques exploit known differences between the speech and 

interfering noise in order to obtain an estimate of the speech spectrum. The di­

mensions along which speech and noise sounds differ have been constrained to 

those dimensions that offer theoretical mathematical techniques for their solution. 

Even though these techniques have been demonstrated to enhance the sub­

jective 'quality' of the processed speech, they have not succeeded in improving the 

intelligibility of degraded speech. Human listeners report that the resynthesized 

speech sounds less noisy, but their intelligibility scores remain at or below the level 

of the unprocessed speech. 

Why has it been so difficult to improve the intelligibility .of speech in the 

presence of other interfering sounds? This writer's opinion is that it is unlikely that 

one can improve the intelligibility of speech corrupted by an additive background 

noise. Below are listed three reasons why it may not be possible to improve the 

intelligibility of speech in the presence of interfering sounds: 

1. The auditory system uses the same information (such as known noise spec­

tral density, or periodicity information) to separate sounds as the speech 

enhancement systems. In order to improve the intelligibility of the degraded 

speech, a computer must use the same information 'better' than the auditory 

system uses it. Since the human auditory system's capabilities are currently 

far above those of any machine, it seems unlikely that a computer could use 

a particular piece of information better than the auditory system. 

2. Although the auditory system uses many sources of information for separat­

ing sounds, only one technique is used by any speech enhancement technique. 

Each of the speech enhancement systems uses only a single type of informa­

tion (such as known noise spectral density, or periodicity information) to 

estimate the spectrum of the speech signal. The au~itory system is free 

to use both of these information sources as well as many other knowledge 

sources (use of pitch dynamics, onsets and offsets, amplitude modulation) 

for separating speech from the interfering noise. 

3. Even if speech enhancement techniques were able to estimate the speech 

9 



spectrum with the same accuracy as the auditory system, the auditory sys­

tem uses information about the interfering noise to aid it in its recognition 

of the speech signal. If the interfering noise is very loud, it may be difficult 

or impossible to estimate the parameters of the speech signal. The auditory 

system can use this knowledge that the speech signal is 'masked' by the noise 

. signal to aid it in its attempt to recognize the speech signal. The resynthe­

sized sound of the speech enhancement techniques contains no information 

about the interfering noise or the uncertainty of the speech estimate. 

These difficulties make it uncertain whether speech enhancement will ever be 

able to improve the intelligibility of speech degraded by an interfering noise source. 

Speech enhancement has only been shown to improve the quality of processed 

speech and decrease listener fatigue in normal hearing subjects [Lim 1983]. 

A more appropriate goal for the processing of degraded speech is sound sep­

aration. Sound separation is the processing of an incoming signal which assists in 

the recognition of each of the sounds that are present in the listener's environment. 

Instead of aiding a person in the separation of speech from interfering sounds, a 

sound separation device could aid a computer in its recognition of speech in a 

noisy environment. 

Speech enhancement systems, originally designed to improve the intelligibil­

ity of speech in the presence of noise for human listeners, are now being considered 

as preprocessors for speech recognition systems. Recognition systems currently 

work by classifying sequences of incoming spectral slices as one of the possible 

words in the allowable lexicon. Speech enhancement systems could be added to 

a speech recognition system to provide estimates of the speech spectrum in the 

presence of interfering sounds. Even though speech enhancement systems have 

been unable to improve the intelligibility of degraded speech for a human listener, 

a computer that is trying to recognize speech may find the enhanced speech to be 

of great benefit over the unprocessed signal. 

An important point that is emphasized in this thesis is that sound separation 

and sound recognition in the auditory system are not disjoint systems that work 

in a serial fashion, but work together in order to interpret incoming sounds. The 
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integration of separation and recognition processing into a joint interpretation 

model has advantages over the previous approach of a cascade model of separation 

and recognition. 

Sound recognition can provide sound separation mechanisms with feedback 

to improve the capability and performance "of the separation system. Besides 

providing a recognition system with a spectral estimate of the speech signal, it 

can also provide the recognition system with information about the accuracy of 

the spectral estimate and an estimate of the spectrum of the interfering noise. 

These quantities are not provided as output because current speech recognition. 

systems do not use this information, since they have been designed for sound 

recognition in a quiet environment where no other interfering sounds art;! present. 

In summary, current speech enhancement techniques are designed to en­

hance the speech signal by using a single acoustic property which differentiates 

the speech from the noise. The dimensions along which speech and noise sounds 

differ have been constrained to those dimensions which offer theoretical mathe-

"matical techniques for their solution. Limiting assumptions (such as known noise 

spectral density, or that the speech is voiced) are "made which allow the speech 

enhancement techniques to exploit known differences between the speech and in­

terfering noise in order to obtain an estimate of the speech spectrum. 

Even though these techniques have been demonstrated to enhance the sub­

jective 'quality' of the processed speech, they have not succeeded in improving 

the intelligibility of degraded speech. It is not clear to the author if improved 

intelligibility is an achievable goal. Instead of focusing on speech enhancement, 

emphasis should be directed towards sound separation. Instead of focusing on 

helping people recognize speech in a noisy environment (which they already do 

quite well), sound separation focuses on aiding a computer to recognize a person 

speaking in the presence of other interfering sounds. 

1.3 Research Goals 

The capabilities and performance of the human auditory system in inter­

preting incoming sounds are superior to those achievable by a computer. Any 
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computer system that could claim to separate and recognize sounds as well as 

the auditory system would be an instant suc'cess and in high demand. Since the 

auditory system is capable of such a high level of performance and since we do not 

know currently how to achieve this level, this thesis focuses on how the auditory 

system separates sounds. 

This research focuses on developing a conceptual approach concerning what 

knowledge and information the auditory system uses to separate sounds, and how 

the auditory system uses this information to separate them. This research is 

also concerned with the construction of a detailed model of the sound separation 

processing. The next two sections will discuss in more detail what this thesis has 

set out to accomplish. 

1.3.1 How Does the Auditory System Separate Sounds? 

A detailed theory that explains how the auditory system separates sounds 

does not currently exist. The goal of this research is to understand how the audi­

tory system separates sounds using acoustic information present in the incoming 

signal. One objective of this research is to understand what information is used 

by the auditory system to separate sounds. A second objective is to discover what 

transformations and representations the peripheral auditory system performs on 

the incoming sound. A third objective is to learn the ways in which this informa­

tion is used by the auditory system to separate and interpret the incoming sounds 

that it hears. 

The development of a theory of how the auditory system separates sounds 

encompasses many different areas of auditory research. The relationships of sound 

separation with these different fields have been carefully reviewed by this writer. 

The diverse areas of auditory research which provide insight into the separation 

mechanism are: 

• Mechanics of the cochlea and the transduction of sounds 

• Representation and encoding of sounds by auditory nerve fibers 
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• Theories and psychological experiments to determine how the auditory sys­

tem perceives and uses periodic information 

• Psychoacoustic experiments concerned with when the auditory system will 

perceive two sounds, and when two _acoustic stimuli will fuse into a single 

percept 

• Theories and psychological experiments on selective attention, and how the 

auditory system is able to focus its processing on a single sound source 

• Similarities between the interpretation of sounds and the interpretation of 

visual information 

• Gestalt psychology and how the mind organizes, reasons with, and interprets 

information 

This wealth of information about the auditory system has shown that the 

separation mechanism is an extensive and complicated process. It is hypothesized 

in this thesis that sound separation operates on several different 'levels' of pro­

cessing and interacts with sound recognition and sound understanding to jointly 

interpret incoming information. This research focuses on a single part of the 

overall separation mechanism _. how the peripheral auditory system uses acoustic 

information to separate sounds. The focus is on how the auditory system sep­

arates sounds using 'bottom up' or 'data driven' processing. Each of the above 

areas of research has contributed to an understanding of how the auditory system 

uses acoustic information in its interpretation of the sounds that it hears. 

The writer has developed a theory of how the auditory system uses acoustic 

information for the separation of incoming sounds. This theory deals with the 

goals of auditory sound separation as well as the mechanisms it uses to achieve 

its goals. The information, representation, and transformations that the auditory 

system uses to separates sounds are hypothesized. This theory along with other 

relevant information is reviewed in chapter 2, where the operation of the auditory 

system is discussed in some detail. 
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Even with the current level of information about how the auditory system 

works, we are still far away from a precise understanding of the actual operations 

and transformations that the auditory system uses. Although the theory of sound 

separation is based on a hypothesis of how the auditory system separates sounds, 

the actual details of how information is combined and how different quantities are 

computed and used in the auditory system are unknown. Therefore, the details 

that are necessary to complete this model of auditory sound separation are not 

currently known. 

Human pitch perception is an example of an auditory process that has been 

extensively studied for many years now. Experimental data has been-unable to 

distinguish between the different theories of pitch perception. The actual mech­

anisms that the auditory system uses to compute the pitch of a signal remain 

unknown. The large effort that has gone into studying pitch perception and the 

uncertainty that still exists about the pitch processing mechanism has important 

implications for students of the auditory system. It is this writer's opinion that 

it will be a very long time before the actual mechanisms of the auditory system 

are documented and understood. Until these details are uncovered, it is useful to 

hypothesize and test theories and models of how the auditory system processes 

sounds. 

This writer has developed a computer model which separates sounds based 

on the theory of human sound separation. The goals and objectives of the computer 

model will now be discussed in more detail. 

1.3.2 The Construction of a Computer Model 

The construction of a computational model of auditory processing would be 

nearly trivial if we knew what operations are performed by the auditory system._ 

The algorithms of the computer model are only estimates of the actual algorithms 

used, since we do not know the precise details of how the auditory system operates. 

It is extremely difficult to determine, (out of all the possible mechanisms that could 

account for the auditory system's behavior) what the auditory system actually 

uses. 
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The current research effort has used a large body of experimental literature 

to develop the theory of auditory sound separation. A computer model which 

implements this approach to auditory sound separation processing has also been 

developed. The construction of this detailed model has raised many questions and 

issues, and has helped to jointly evolve an understanding of what the auditory 

system is trying to accomplish as well as how it accomplishes this. 

When one is trying to model some process, there are several different types 

of models that one can construct. Since these models can differ in their objectives, 

listed below are three different types of auditory models that can be constructed: 

Literal Model: In a literal model, the model's parameters and output 
correspond to actual variables and quantities that exist 
in the original system that is being modeled. 

Black Box Model: A black box model computes the same output that the 
original system computes, but the computational mecha­
nism for arriving at the output may be different from the 
actual process. 

Functional Model: A functional model hypothesizes both the computational 
mechanism and the output of the system, and tries to 
functionally simulate what is occurring in the original 
system. 

The computer model presented in this thesis is a 'functional model'. The 

intent is to compute the same quantities that the auditory separation system com­

putes, and to use them in the same way that the auditory separation system uses 

the information. The computational model of auditory sound separation is con­

cerned with what is computed by the auditory system and how these con~putations 

contribute to the successful separation of sounds. Our current understanding of 

the detailed computations performed by the auditory system is primarily limited 

to the peripheral auditory system. Not much is known about the detailed process­

ing of the central auditory nervous system. Both the computer model's output 

and the mechanisms for achieving this output are hypothesized as the mechanisms 

and representations that the auditory system uses to separate sounds. 

Due to the number of different interacting factors in an auditory model, the 

model's complexity is too great for it to be understood on paper alone. The use 
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of computers allows one to simulate how the model will fWlction in different cir­

cumstances. In a complex model, not all of a model's behavior can be predicted 

beforehand. By studying the output of computer simulations of the sOWld sepa­

ration process, one may observe different effects not foreseen before the model's 

construction. A computer model has the advantage of not only specifying precisely 

what algorithms are used, but of being useful in studying the intricate interaction 

between the many factors that influence the sOWld separation process. 

The computational model of sound separation presented in this thesis tries 

to functionally simulate the important steps in the use of acoustic information 

for the separation of soUnds. It is based on the theory that the auditory system 

computes similar quantities, even if the algorithms and the representations that 

the auditory system uses differ slightly from those presented in this thesis. 

The current implementation is focused on the sound separation process at 

the lowest levels of auditory processing. It does not make any use of higher level 

linguistic information used by the auditory system when it separates sounds. A 

detailed model of the complete separation process is a very large project and 

is beyond the scope of this thesis. A detailed model of the complete auditory 

separation process would require the addition of an auditory recognition unit that 

would interact with the separation mechanism to jointly interpret the incoming 

information. 

How does one evaluate a computer model of the lower levels of auditory 

separation processing when the upper limit of separation performance is not known 

and when it is not clear what the optimum solution to the separation problem 

is? This thesis has developed several techniques to evaluate the accuracy and 

performance levels of the separation algorithms that have been developed. In 

addition, the separation output is connected to an existing speech recognition 

system in a cascade fashion to measure the recognition accuracy ot the separated 

output. 
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1.3.3 Limitations of the current focus 

The auditory system is a complex mechanism that is not fully understood. 

To limit this thesis to a reasonable size, several aspects of separation processing are 

not dealt with. Below are listed some of the issues not addressed by this research: 

1. How to separate sounds when the noise is stationary and of known spectral 

density. This thesis focuses on interfering sounds which are complex in their 

nature and are not known beforehand. It attempts to separate two people 

who are speaking at the same time. 

2. How to separate sounds with binaural information. It is clear that the use of 

binaural information can improve the performance of a separation system. 

One could also use a microphone array to focus on a particular direction of 

incoming sounds. The auditory system performs the separation of sounds 

sufficiently well with a single ear; it is important first to understand how it 

accomplishes this without introducing additional input channels. 

3. How the auditory system uses high level knowledge to improve the separation 

processing. Although feedback from a recognition system can help improve 

separation performance, the separation algorithms employed here use strictly 

'bottom up' processing in the separation of sounds. 

4. How the auditory system separates sounds that are not independent of each 

other. How does the auditory system pick out one violin out of the many 

instruments playing in an orchestra and selectively listen to it? How does 

the auditory system recognize that there are two voices singing or reciting 

the same text rather than one voice? This is a difficult issue too complex to 

be addressed at the current time. It is also not clear that the auditory sys­

tem can actually accomplish selective separation using acoustic information 

alone, and it may be that this process relies extremely heavily on the use of 

predictions of what it expects to hear to achieve this goal. 

The goal of this research, then, is to understand how the auditory system 

separates sounds using acoustic information present in the incoming signal. The 
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objectives of the separation theory are to understand what information is used 

by the auditory system, the way that this information is used to separate sounds, 

and what transformations and representations the peripheral auditory system per­

forms. The computational model of sound separation presented in this thesis is 

intended to functionally simulate the important' steps in the use of acoustic in­

formation for the separation of sounds. It is claimed that the auditory system 

effectively computes similar quantities, even if the algorithms and the represen­

tations that the auditory system uses differ slightly from those presented in this 

thesis. 

1.4 Overview 

This writer's theory of auditory monaural sound separation is presented in 

chapter two. An overview of the separation processing will be presented, along 

with experimental results which will show that: (1) the auditory system uses 

many different types of information for sound separation, (2) sound separation 

occurs at different levels in the auditory system, and (3) sound separation and 

sound recognition work together and can be viewed as a part of the perceptual 

organization of the incoming data. Even though this thesis focuses only on the use 

of acoustic information for sound separation, the joint workings of the separation 

and recognition mechanisms will be stressed to emphasize how they collectively 

decide what parts of the incoming sound came from which sound sources. After the 

overview of auditory sound separation, a model of the auditory mechanism used 

for separation will be discussed in detail. The different representations employed 

and decisions "that the auditory system must face are stressed. 

A computational model based on this theory of auditory sound separation 

is presented in chapter three. It reviews the different representations and trans­

formations used in the separation algorithms. Models of cochlear filtering and the 

use of periodic information by the auditory system are discussed. The limitations 

of the first version of the computer model are presented along with a detailed 

description of the second generation of computer modeling of auditory sound sep­

aration. How the system determines how many sounds are present, and how the 
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spectral estimates of each sound present are computed are also presented. 

An evaluation of the current theory and algorithms is presented in chapter 

four. Experimental results document the accuracy and capability of each compo­

nent in the computer model. The limitations of the current computational model 

are reviewed to point out what the problems are and what issues the model leaves 

unsolved. 

Chapter five will discuss the future directions of research on sound separa­

tion. Suggestions about how the computational model can be improved will be 

discussed as well as the addition of other mechanisms such as binaural processing. 

It will focus ')n the interface of a separation system with a rec.ognition system, 

and what requirements and modifications this imposes on a classification system. 

Psychoacoustic experiments that are needed to better understand the auditory 

separation system are discussed. A summary and discussion of the potential of 

this approach to sound separation are also included. 
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Chapter 2 

A Theory of Auditory Monaural 
Sound Separation 

2.1 Need for an Auditory Model of Sound Separation 

If one examines any book on speech perception, one will typically find 

several different theories on how the auditory system perceives speech. Some 

of the theories usually listed are the distinctive feature model, the motor theory 

model, and the analysis by synthesis model [Sanders 1972]. These theories of 

speech perception differ in some ways (e.g., passive versus active models) but are 

all models of how the auditory system hears a single sound. A typical model of 

speech perception is shown in figure 2.1. 

The model of speech perception that appears in figure 1 shows the processing 

that occurs during the interpretation of a single s,ound. Different sig~al processing 

operations are performed on the incoming sound, which is followed by a sophis­

ticated hierarchical classification algorithm. What is missing from this model of 

the auditory system is how extraneous information from another sound present 

is handled (or recognized as being extraneous and not belonging to this speaker). 

There are no mechanisms that separate sounds, or which recognize one speech sig­

nal in the presence of other interfering sounds. This chapter will present a theory 

of how the auditory system separates sounds, and how one sound is recognized in 

the presence of other sounds. 

20 

( 

1 

I 
( 

',-



j-

I 
L 

LEVEL A 

LEVEL B 

LEvEL C 

LEVEL D 

LEVEL E 

LEVEL F 

LEVEL G 

LEVEL H 

LEVEL I 

OUTPUT 

GENERATivE RULES 
IN LONG - TERM 

MEMORY 

SPEECH SOUND 

~ 
MECHANICAL TRANSDUCTION 

SPEECH RATE DETECTOR 

SPEECH UNDERSTANDING 

One possible model of information-flow during speech perception. 
Note that a number of levels may exist within each of the processing stages 
identified here. 

Figure 2.1: A model of the perception of a single sound source [Cooper 1979] 

2.2 Goals of Early Auditory Processing 

The starting point for auditory processing is the cochlea's transformation 

of pressure vibrations in the air into a neural representation of the sound that 

is heard. The cochlea filters the incoming sound into many different frequency 

regions along the length of the basilar membrane. The organ of corti detects the 
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vibrations of the membrane, and represents .them as neural firings on the fibers 

in the cochlear nerve. These neural firing events are the only representation of 

information available to the early auditory system. 

Each neural firing can be viewed as having certain properties, such as the 

time it occurred, and the properties of the neuron from which it came. It can also 

be viewed as having other properties associated with it, depending on the relation­

ship between this neuron firing and other neuron firings (such as the simultaneous 

firing of other neurons, or the time between this firing and the previous firing of 

this neuron). It is the relationship between these neural firings (which compose 

the representation of the sound) that must be used by the auditory system to 

separate sounds. 

One goal of early audition is defined as determining what parts of the 

incoming sound belong together. The individual neural firings are the fun­

damental objects manipulated by the auditory system. Based on the properties 

in a local frequency-time region (computed from the relationship between the dif­

ferent neural events), a determination is made whether the events in this local 

frequency-time regions are the result of the same incoming sound source, or are 

from different sound sources. 

The auditory system must determine both how many sound sources are 

present and what each sound source consists of. The separation system can be 

viewed as computing what sounds must have been present to have caused the 

auditory representation that is observed. 

The process of determining which sound source caused the observed neu­

ral firings in a local frequency-time region is a part of the overall interpretation 

processing that the auditory system performs on an incoming sound. Other, pre­

sumably higher-level parts of the interpretation process are the 'classification' of 

the incoming sound and the 'understanding' (the 'meaning') of what the sound 

is. The determination of what sound source the incoming neural firing belongs to 

facilitates the classification of what the sound is. The separation, recognition, and 

understanding mechanisms work together in the auditory system to interpret the 

incoming sound. 
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This view is similar to the role of perceptual organization proposed by Witkin 

and Tenenbaum [1983] in the context of vision: 

"We propose that perceptual organization is not a description of the 

image at all, but a primitive, skeletal causal explanation. The 

basis for these primitive inferences is the discovery of similarities -:­

literal spatiotemporal ones - that are extremely unlikely to arise by 

accident. '" Within the constraints that non-accidental regularities 

provide, deeper interpretation proceeds by labeling, refining, and elab­

orating the initial model, discovering new regularities along the way 

as additional knowledge can be brought to bear." [Witkin and Tenen­

baum 1983] 

Witkin and Tenenbaum claim that when people view two parallel lines, they 

can be quite certain that there is some reason for that similarity. It is highly 

unlikely that two unrelated lines would happen to be parallel. The perceptual 

system 'knows' that when it sees two parallel lines it is highly likely that there is 

some underlying causal explanation. It is the similarity between the two parallel 

lines which implies some relationship between them. This relationship can be 

attributed to some underlying process responsible for the observed parallelism 

between the lines. 

The same reasoning applies to the perception of sounds. Suppose that at 

some instant in time, there is a sudden onset in several different frequency re­

gions. It is highly unlikely that two independent sounds started at precisely the 

same tIme, and that the simultaneous responses in different frequency regions were 

caused by independent sound sources. It is more likely that the auditory repre­

sentation was generated by a single sound source and all the onsets that occurred 

at that time can be attributed to the onset of a single sound source. 

In the processing of incoming sounds, if at some time two different frequency 

regions have properties in common (similar onsets, similar period of repetition, or 

other features), then one can conclude that there is probably some relationship 

between these two regions. The greater the similarity between the properties of the 
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different frequency regions and the greater the number of properties, the stronger 

the relationship between the two. Similar features between the two frequency 

regions implies that there is some relationship between them that is unlikely to 

arise by accident. Typically, this means they have come from the same sound 

source, although it is possible they have been generated by different sources (as 

in an orchestra or a choir when the sounds are not independent). Whether or not 

they have actually been generated by a single sound source, they are perceived as 

a single unit, as if they actually did come from the same source. 

The physical processes that generate sounds obey the laws of physics and 

are therefore limited in the different sounds that can be produced. The- time and 

bandwidth limitations of the sOWlds that we hear depend on the properties and 

mechanisms of the sound source. The rate at which spectral changes can occur 

is one constraint on natural sOWlds. Different frequency regions generated by 

natural sounds are constrained to have similar properties such as onsets, offsets, 

and periodicity. The auditory system uses these constraints for separating the 

different sounds that are present. When two pieces of information are present 

that are not likely to have been generated by the same sound source, the auditory 

system will in general hear them as belonging to separate sound sources. 

The auditory system also uses the independence between two sounds to help 

it separate them. Most of the sounds that we hear are independent of each other. 

There are comparatively few sounds, such as an orchestra or a choir, where the 

different sound sources are n.ot independent. Each of the sounds we hear has 

its own dynamics, spectral characteristics, onsets and offsets. Since each of the 

sounds is typically iridependent of the others and will have its own properties, it 

is unlikely that two sounds will have exactly the same information cues [Witkin 

1983]. Therefore, the probability that two sounds will have the same pitch contour 

or onset time is small. When the auditory system sees two different pitch contours 

that overlap in time, it concludes that each of the contours has come from a 

different sound source. 

Psychologists have used the principles of similarity, proximity, good contin­

uation, and common fate to explain how the perceptual system organizes its input 
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[D. Weintraub et al 1966]. The separation of sounds is a part of the perceptual 

organization that the auditory system imposes on the incoming sounds. 

The goal of determining what parts of the incoming sound belong together 

is very different from the goals of speech enhancement techniques, or from the 

goals of the 'equalization-cancellation' theory of binaural noise suppression. The 

equalization and cancellation (EC) model of binaural noise suppression consists 

of the equalization of the noise components in the two ears (by using time delays 

and amplitude scaling), followed by the cancellation of the noise components (by 

subtracting the output of one ear from the equalized version of the other ear). This 

model has been primarily applied to explain bina~al unmasking data (increase in 

detectability and intelligibility through the use of binaural information). 

Both the spectral subtraction techniques of speech enhancement and the 

equalization and cancellation technique use a subtraction operation which consti­

tutes the enhancement of the desired signal. In neither case is there any need for 

further analysis of the noise signal by the recognition or understanding mecha­

nisms. Instead of focusing on extracting the signal based on similar features, the 

focus is on cancelling the noise. 

The difference between noise suppression and signal extraction can be illus­

trated with the following example. The subtraction of the output of one ear from 

the other ear can only form a null zone for noise coming from a single direction. 

The EC model will therefore have great difficulty in separating a signal from noise 

when there are several noise sources coming from different directions. In the limit 

when the noise signals in each ear are different independent noise sources, the EC 

mechanism is unable to cancel the noise in one ear from the other ear. However a 

mechanism that focuses on signal extraction will use the knowledge about which 

direction the signal is coming from to extract the signal from the noise that comes 

from a different direction. 

To summarize the use of the different information cues by the auditory 

system: When the auditory system encounters sound patterns that are not likely 

to have arisen from a single sound source, the auditory system interprets them 

as coming from different sound sources. It uses the regularity and continuity 



that natural s01lllds contain in order to determine how many s01lllds are present 

and what each s01llld consists of. It focuses on finding common properties in the 

representation which indicate a causal relationship between the local events in 

different frequency-time regions. 

2.3 Overview of Auditory Separation 

2.3.1 Use of Multip-le Knowledge Sources in Sound Separation 

One objective of this research is to 1lllderstand what information cues are 

use;~y the auditory system to separate s01lllds. Another objective is to 1lllder­

sta Joth how the auditory system computes these different information cues, 

and how it uses this information to separate two s01lllds. This section will present 

an overview of the auditory separation mechanism and will focus on determining 

what information is used by the auditory system to separate s01lllds. 

Psychoacoustic experiments will be reviewed that show the auditory system 

uses many different types of information for the separation of the s01lllds that it 

hears. These information cues are: pitch,! pitch dynamics, the onset and offset of 

s01lllds, spectral continuity, local amplitude modulation fluctuations, visual infor­

mation (e.g., lip-reading cues), and linguistic information (phonetic transitional 

probabilities, word transition probabilities, phrasal and message content). 

Besides these monaural cues for s01llld separation, there are also binaural 

cues that aid the separation of s01lllds. Binaural information processing is hypoth­

esized as consisting of many levels, just as monaural processing does. The lowest 

level of binaural processing is the best known and focuses on how the auditory 

system uses the timing and intensity differences between the cochlear output of 

the two ears. Binaural information at the higher levels consists of. the fusion of 

monaural processing performed separately in each ear. Although binaural infor­

mation has been shown to improve auditory separation performance, and the use 

of binaural information in the computer model would probably result in an in­

crease in separation performance, the goal of this research is to 1lllderstand how 

1 In much of the literature on speech, the term pitch is used to refer to fundamental frequency. 
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monaural sound separation is performed. 

It is important to Wlderstand how the monaural auditory system uses the 

different pieces of information available to it for sOWld separation. The results 

of psychoacoustic experiments (discussed later in this section) can be viewed as 

follows: when it is highly unlikely that the information pattern (that the auditory 

system is attempting to interpret) was generated by a single sound source, the 

auditory system will hear two sound sources. Information cues that are highly 

unlikely to have come from the same sOWld source are heard as coming from 

different sound sources. 

2.3.1.1 Use of Pitch in Sound Separation 

Research on the use of periodic information for the separation of sounds 

dates back t'o experiments by Broadbent and Ladefoged in 1957. The perception 

of periodic information has been extensively investigated in the literature and 

constitutes the best known cue for the separation of sOWlds. 

In Broadbent and Ladefoged's experiments, when two formant resonators 

(locations of peaks in the spectral contour) were excited by pulse trains with 

different periods of repetition (different fWldamental frequencies), they failed to 

fuse into a single sound image and two sounds were heard. Experiments by Cutting 

[1976] showed that formant patterns presented in dichotic listening tasks will fa,il to 

fuse into a single sound image when the difference in fWldamentals between the two 

ears is as small as two Hz (100 Hz fWldamental in one ear and 102 Hz fWldamental 

in the other), Results by Darwin [1981] also confirm that two sounds are heard 

when formant resonators are excited by different fundamental frequencies. 

In a different series of experiments, Darwin [1977] showed that if the funda­

mental frequency changes abruptly during the synthesis of a continuous formant 

pattern, two sounds will be heard by the auditory system. While the spectral 

shape changed continuously over time, the pitch contour changed discontinuously 

between two different steady state values. At any point in time, there is only one 

fundamental frequency present. Each of the different frequency regions (at any 

any moment in time) will have the same periodicity and both are heard as coming 
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from the same sound source. However regions in time across the pitch disconti­

nuity are not heard as coming from the same sound, but are assigned to different 

sound sources. 

Presumably this happens because the human vocal system is not capable' of 

producing abrupt pitch discontinuities during voiced speech. It is also not capable 

of producing different frequency regions having different fundamental frequencies. 

Therefore, when the auditory system encounters a situation where the sound pat­

tern could not have been generated by a single speaker, it believes that two sound 

sources were responsible for generating the observed periodic information. 

These two series of experiments have different implications about the au­

ditory system's use of periodic information for sound separation. In the first 

example (two simultaneous formants with different fundamental frequencies), dif­

ferent frequency regions are heard as coming from different sound sources. The 

auditory system has determined that there are two periods of repetition present 

at the same time, and that these periodic sounds could not have been generated 

by the same sound source. Each frequency region that has one period of repeti­

tion is assumed to come from one sound source, but those frequency regions with 

a different periodicity are assumed to come from a different sound source. This 

experiment demonstrates that two simultaneous frequency regions can be inter­

preted as coming from different sound sources if there is more than one period of 

repetition. 

In the second example (pitch discontinuity of a continuous formant contour), 

different time segments of the sound are heard as belonging to different sound 

sources. This experiment demonstrates that different nonoverlapping segments of 

a sound can be assigned to different sound sources if the pitch changes abruptly 

and the resulting pitch tracks could not have come from a single sound source. The 

difficulty here is to determine what are the possible pitch contours that could have 

been generated by a single sound source. If the pitch change had been very gradual 

instead of abrupt, the auditory system might have assigned the whole segment to 

a single person speaking. This would imply that there exists a boundary for the 

rate of pitch change: if the pitch changes faster than this boundary rate, the 
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auditory system concludes that two sounds are present; if it changes slower than 

this rate, the auditory system hears only a single sound present. [Note: this also 

raises questions about how the auditory system perceives diplophonic speakers.] 

Shadowing experiments also have shown that pitch continuity is important 

for sound separation. In a shadowing experiment, a listener has a different message 

played to each ear, and is told to repeat what is heard in one ear as quickly as 

possible while ignoring what is heard in the other ear. If the message that a 

person is shadowing (the message that the person is trying to isolate) suddenly 

switches to the other ear, the listener will continue to follow the message that is 

now in the wrong ear for a short period of time [Treisman 1960]. Experiments 

by Simmonds and Darwin [Darwin 1978] showed that a listener would follow the 

wrong message depending on whether the intonation pattern was contiriuous. If 

the intonation pattern in the shadowing ear was continuous across the semantic 

break (when the message switched ears), the listener would hesitate but correctly 

shadow the incoming message. If the intonation pattern switched ears along with 

the message, the listener would mistakenly follow the message in the wrong ear. 

These experiments show that pitch-continuity information is an important cue 

when a person is listening to a message. 

The experiments discussed above have shown that two sounds will be heard 

when two frequency regions have different periods of repetition, or when the period 

of repetition of a frequency region changes too abruptly. Periodic sounds produced 

by the human voice are constrained to have only a single period of repetition at a 

single time, and are also constrained to continuous changes in the pitch dynamics. 

Regions in frequency and time that are in conflict with the single sound hypothesis 

will be assigned to different sound sources. 

2.3.1.2 Use of Pitch Dynamics in Sound Separation 

Researchers have begun to study the effects of fundamental frequency dy­

namics on sound separation. When the fundamental frequency of a natural sound 

changes, the frequencies of the harmonic components of that sound will also change 

proportionally to the change in the fundamental component. Experiments by 
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McAdams [1984] indicate that when frequency components do not exhibit coher­

ent frequency movement, two sOWlds are heard. The components that exhibit 

different frequency dynamics will stand out and be heard as a separate sOWld 

source. 

The experiments performed by McAdams used different types of frequency 

modulation such as vibrato (periodic modulation), jitter (aperiodic modulation) 

and pitch glides. In one of his experiments, when 15 harmonic components of 

a 16 component tone are modulated coherently (with a random change in the 

fundamental frequency) and one of the harmonics is modulated incoherently, that 

harmonic component is easily heard as being separate. 

Rasch [1978] performed a series of experiments on the detection of a softer 

note in the presence of a louder note. He fOWld that a frequency vibrato on 

the pitch of the test note (depth= 4 percent, frequency= 5 Hz.) decreased the 

detection threshold (the amplitude that the weaker note could be detected) relative 

to the masking note by 17.5 db. These results indicate that the auditory system 

can use fWldamental frequency dynamics to improve the separation of one tone 

from another. 

When two periodic sounds are present, some of the harmonics from each 

sound will be close in frequency to those of the other sOWld. The independent 

motion of the fundamental frequency of the different sOWld sources can improve 

separation since the auditory system can use such cues to prevent the assignment 

of harmonic energy to the wrong sound source. 

2.3.1.3 Use of Onsets and Offsets in Sound Separation 

Amplitude changes in different frequency regions can be used by the audi­

tory system as an indication of whether the two different frequency regions were 

created by the same sound source. For many types of sounds, when a sound 

segment begins, the different frequency regions will all start at roughly the same 

time. The simultaneous starting and stopping of the cochlear output in differ­

ent frequency regions can be used by the auditory system to determine when two 

frequency regions have originated from the same sound source. 
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Rasch [1978] demonstrated that if two musical notes start at different times, 

they will not fuse into a single 'sotllld object' but will be heard as separate notes. 

If the starting discrepancies are as small as 30 msec, subject will not hear one 

note as starting before the 'other but will hear two separate notes. Rasch claims 

that "the two notes are perceived as two separate but simultaneously occurring 

sOtlllds. " 

Bregman and Pinker [1978b] demonstrated· that the relative onset between 

two pure tones is an important factor in how the auditory system perceives them. 

A pair of roughly synchronous tones (called B and C) were alternated with another' 

tone (called A) which was approximately the same frequency as tone B. If the 

tones B and C had simultaneous onsets, they were more likely to be perceived as 

belonging to the same stream. As the difference in time of onset between the two 

tones increases, the two tones are less likely to belong to the same sotllld stream 

and tone B was more likely to stream with tone A. This experiment indicates that 

the relative onset time between two different frequency regions is an important 

cue as to whether they have originated from the same sotllld source. 

1?xperiments by Darwin [1984b] have shown that if a harmonic of a vowel 

starts or stops at a different time from the rest of the vowel's harmonics, it will 

be perceptually segregated from the vowel. This effect is present even at an onset 

disparity of 32 msec, but longer differences between the onset or offset of the 

harmonic and the vowel allow better separation of the harmonic from the vowel. 

In other experiments he showed that "a harmonic that starts at the same time as 

a short vowel but continues after the vowel has ended contributes almost as little 

to the vowel's phonetic quality as a harmonic that starts before but stops at the 

same time as the vowel." [Darwin 1984a] 

The experiments discussed above demonstrate that the si,multaneous onset 

and offset of different frequency regions are important factors in the perception of a 

single sound. A difference in onset times can cause the auditory system to perceive 

that two sotlllds are present. If different frequency regions have different onset or 

offset times, the auditory system may interpret this difference as an indication 

that they came from different sotllld sources. 
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2.3.1.4 Use of Common Amplitude Modulation in Sound Separation 

Whereas the pitch dynamics information cue dealt with a common motion of 

the period of repetition in each frequency channel, common amplitude modulation 

deals with the common fluctuations in amplitude in different frequency regions. 

The term 'common amplitude modulation' differs from onsets and offsets of sounds 

since it is defined as the change in amplitude of an already existing sound. Once 

a sound has started, the amplitude fluctuations present in each frequency channel 

can be measured. 

Hall, Haggard and Fernandes [1984] have performed some important work 

which demonstrates that common amplitude modulation can be used by the au­

ditory system to improve the detectability of a pure tone in noise. 

"Detectability of a 400 msec 1000 Hz. pure-tone signal was exam­

ined in bandlimited noise where different spectral regions were given 

similar waveform envelope characteristics. As expected, in random 

noise the threshold increased as the noise bandwidth was increased up 

to a critical bandwidth, but remained constant for further increases in 

bandwidth. In the noise with envelope coherence however, threshold 

decreased when the noise bandwidth was made wider than the criti­

cal bandwidth. The improvement in detectability was attributed to a 

process by which energy outside the critical band is used to help dif­

ferentiate signal from masking noise, provided that the waveform en­

velope characteristics of the noise inside and outside the critical band 

are similar. With flanking coherent noise bands either lower or higher 

in frequency than a noise band centered on the signal, it was next de­

termined that the frequency relation .and remoteness of the coherent 

noise did not particularly influence the magnitude of the unmasking 

effect." [Hall, Haggard, Fernandes 1984, p.50] 

In order for the common waveform envelopes in different frequency regions 

to improve the detectability of a tone, the auditory system must be capable of 

comparing local amplitude fluctuations in different frequency channels. These 
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experiments also demonstrate that the auditory system can determine if the am­

plitude modulation contours in different frequency regions are the same. If a single' 

sound were present, it would have the same amplitude modulation envelope. The 

waveform envelope modulation used in these experiments was low-pass noise (0-50 

Hz). The noise used implies that modulation envelopes 'on the order of 20 msec 

or longer can be used by the auditory system to improve detect ability of a tone in 

noise. 

The similarity in local amplitude fluctuations between different frequency 

channels can also be used to distinguish between different sounds. Experiments 

[Warren and Verbrugge 1984] have shown that a person can tell the difference 

between a bottle which is bouncing from one that has broken. Synthetic sounds of 

a bouncing bottle and one that has broken upon impact were generated with the 

same average spectrum, but they differ in the simultaneousness of the local ampli­

tude fluctuations in different frequency regions. Listeners were able to differentiate 

accurately between these two cases. 

These experiments should not be interpreted to mean that a lack of am­

plitude modulation routinely gives rise to the perception of two sound sources. 

They have demonstrated that the auditory system can compare the local ampli­

tude modulation envelopes across frequency regions and use this information for 

sound separation. 

2.3.1.5 Use of Visual Cues in Sound Separation 

While the previous four sections have dealt with four different acoustic 

cues for sound separation (pitch, pitch dynamics, onsets and offsets, amplitude 

modulation), the next two sections deal with higher-level information cues for the 

separation of sounds. The use of visual and linguistic information are discussed 

in the next two sections even though they are not included in the current compu­

tational model (discussed in chapter three). The computer model focuses on the 

use of acoustic information for sound separation. The use of visual and linguistic 

information in a computer model of sound separation is beyond the scope of the 

current thesis but is included here for the sake of perspective. 
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Lip reading has long been used by deaf people to Wlderstand what other 

people are saying. They are able to look at the facial motions of someone speaking 

and Wlderstand what is being said. Cherry [1953] suggested that reading lips is 

helpful for separating voices from interfering sOWlds. 

McGurk demonstrated that visual cues play an important part in the recog­

nition ofsoWlds [McGurk and MacDonald 1976]. The 'McGurk effect' occurs when 

visual and auditory cues conflict, and the result is some intermediate perception. 

When subjects see a speaker articulating I gal and hear the word Iba/, they often 

report hearing the sequence I da/. Other experiments [Massaro and Cohen 1983] 

demonstrated that as the acoustic signal changes gradually from a Ibal to a I da/, 

the perception of the Ibal -I dal bOWlcl.ary shifts when visual information con­

flicts with auditory information. These experimental results indicate that visual 

information is used by the auditory system for the recognition of sOWlds. 

Although this evidence suggests that visual cues are used for sOWld recog­

nition, they do not prove that they are used for sound separation. Visual infor­

mation can be very useful to the auditory system for improving the separation 

performance in the presence of interfering sOWlds. The information obtained from 

looking at the movement of a speaker's lips is useful not only for determining what 

the speaker is saying, but for determining when he is speaking. The knowledge 

about when a person moves his lips can be very useful for knowing that the sound 

that we are currently perceiving is coming from that speaker. The synchronization 

of acoustic events with the desired speaker's lip movement can be a powerful cue 

for determining which speaker an acoustic event belongs to. 

Although visual information has not been shown to be used by the auditory 

system for sOWld separation, it is reasonable to suppose that visual information 

can be of great benefit in the cocktail party phenomenon. The visual system 

provides information about when a person is speaking and what he is saying. 

2.3.1.6 Use of Linguistic Information in So·und Separation 

Linguistic information is commonly used in theories and models of auditory 

sound processing. Its typical use is in the recognition of sounds at different acoustic 
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levels (phonemes, words, concepts). 

Experimental results of the intelligibility of speech in noise [Rubenstein and 

Pollack 1963; Miller Heise and Lichten 1951; Howes 19571 demonstrated that when 

the predictability of a word increase::!, the intelligibility of that word also increases. 

Linguistic information is therefore used somewhere in the system to improve the 

recognition performance. There are two possible mechanisms for this increase in 

intelligibility. The first mechanism is the use of context information to improve 

the spectral estimates of the sowlds to be separated, and these improved spectral 

estimates are responsible for the increase in intelligibility. The second mechanism 

is the use of context information to allow the recognition system to eliminate 

spurious word sequences and correctly classify what it hears. 

Context information can also operate at the phoneme level. When there 

are two sounds present and one sound is much louder than another sound, it is 

extremely difficult to hear the weaker sound. When the softer sound is masked by 

a loud sound, it may be impossible to estimate the weaker sound using acoustic 

information. The auditory system can use contextual cues of neighboring regions 

to interpolate what sounds could have been present in the masked interval. 

A series of experiments by Warren [1971, 1972, 19741 demonstrated that if 

predictable phonemes are deleted from a sentence and replaced by a loud noise, 

listeners perceive both the loud noise and the missing phoneme. The perception 

of sounds that are not present has. been called 'auditory induction.' The synthesis 

and perception of the missing phonemes has been called 'phonemic restorations'. 

When it appears that a sound has been masked, the auditory system supplies 

the sound most likely to have occurred, based on the linguistic constraints that a 

sentence provides. By contrast, if the phoneme is deleted and replaced by silence, 

listeners do not fill in the silent interval and perceive that a phoneme is missing. 

Expectations about the different sounds which are present allow listeners 

to improve their separation performance. This improved performance is possible 

both in repeated listening to a sound segment and when the listener has a priori 

knowledge of the sound (e.g. listening to familiar music). Expectations about the 

desired and interfering sounds, as well as knowledge of what each of the different 
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instruments sounds like, are used to improve separation performance. Since the 

auditory system knows what it expects to hear and what the timbre of the different 

sound sources are, our perception that we are able to clearly separate out one sound 

from the other sounds present suggests that we are perce'iving the model of a sound 

and not the acoustic information present in the origi"nal signal. 

Another way in which the auditory system uses linguistic information can 

be seen in the following exaI.llple. Suppose that we are listening to a male and a 

female voice. The male voice says the digit I three I, and the female voice then says 

the digit I seven/. The digit waveforms can be spliced together digitally so that 

the digit Isevenl starts as soon as the digit Ithreel ends. When this sequence 

is played to a listener, he hears a male voice saying the digit Ithree/, followed 

immediately by a female voice saying the digit Iseven/. However, if we delete the 

levenl part of the digit Isevenl, what is left is the digit Ithreel followed by the lsi 
of the digit Iseven/. When people listen to this waveform, they will hear the word 

Ithrees/. Since the voiced part of the female voice is missing, the auditory system 

interprets the I s I as belonging to the male voice. It is only after the listener hears 

the voiced p~t of the female digit seven that the lsi is correctly interpreted as 

belonging to the female voice. 

Two information Cl1~S aid the auditory system in determining which speaker 

is responsible for saying tile lsi. The presence of smooth spectral transitions be­

tween the lsi and the surroWlding voiced regions is one cue that can help the 

auditory system determine which speaker said the lsi. Another source is lin­

guistic constraints. Knowledge about phonemes and phonetic transitions can be 

helpful for determining which speaker produced the fricated segment. Linguisti­

cally, the interpretation of the lsi as forming a .part of the digit I sevenl is a better 

explanation of the incoming sOWld than assigning the lsi to the digit Jthree/. 

The deter~ination of which speaker the fricated energy belongs to is a differ­

ent computation from the problems of spectral estimation. In this example, there 

are no overlapping speech signals that need enhancement. It is trivial to estimate 

the spectrum of the speech sound present since the segments are nonoverlapping. 

The issue is how to determine which part of the incoming sound was generated 
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by which speaker. This example illustrates a conceptual limitation of the speech 

enhancement approach. 

In the experiments on sound separation performed by Cherry [1953], listen­

ers attempted to separate two simultaneously spoken messages. In the listener's 

transcriptions of what was said by the intended speaker, it was observed that: 

"No transpositions of phrases between the messages occurred in this 

example; in other examples extremely few transpositions arose, but 

where they did they could be highly probable from the text." 

This observation supports the hypothesis that the assignment of incoming sound 

segments to the appropriate speaker uses linguistic contextual information. 

Sound separation uses linguistic knowledge about allowable phonetic transi­

tions between speech segments, along with the expectations of what we expect to 

hear each person say, in order to determine which segment was spoken by which 

speaker. Linguistic information is also used by the separation system in determin­

ing what was said in regions where a masking sound obscures the sound that is 

being focused on. 

2.3.2 Integration of Separation and Recognition 

If sounds could be separated solely on the basis of their acoustic information 

cues, it would not be necessary for separation and recognition to work together 

to interpret the incoming sounds. Recognition processing would occur after the 

separation mechanism had separated the incoming sounds. However, the masking 

of one sound by interfering sounds, and the changing of the characteristics of a 

speaker's voice (e.g., from periodic to nonperiodic) make it difficult to separate 

sounds using only acoustic informatioh. The recognition mechanism can work with 

the separation mechanism to jointly separate and recognize the incoming sound. 

This section discusses the relationship between sound separation and sound 

recognition mechanisms. Experimental results will be presented which demon­

strate that the 'recognition' mechanism does much more than classify the incoming 

sound patterns into categories. 
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When sounds cannot be separated on the basis of their acoustic cues, it is 

still possible for the auditory system to identify several simultaneous sounds. Ex­

periments by Scheffers [1979, 1982] presented listeners with two synthetic vowels 

that could not be separated based on their acoustic properties, since both vow­

els had similar onsets and offsets and used the same excitation function in the 

synthesis process ( either both excitation functions were periodic with the same. 

fundamental frequency or both excitation functions were the same white noise 

excitation). He demonstrated that listeners were still able to identify both vowels 

present remarkably well (each vowel was chosen from a set of 8 vowels; both vowels 

were correctly identified 45% of th~ time when both vowels were voiced, 26% of 

the time when both vowels were unvoiced). This demonstrates that even when 

the separation mechanism',j unable to separate the incoming sound using acoustic 

information, the recognition mechanism is still able to recognize each of the two 

sounds. The recognition mechanism is capable of recognizing several simultaneous 

overlapping patterns. 

Other experiments demonstrate that even when the separation mechanism 

does use acoustic information to separate an incoming signal, the recognition mech­

anism may put the separated output back together for the classification of the 

sound (as if the sound had not been separated). Experiments by Darwin [1981] 

and Cutting [1976] synthesized each of a vowel's two formants with different fun­

damental frequencies. Even though two sounds were heard, the listener was able 

to correctly identify the vowel that was presented. If the separation mechanism 

had assigned each formant to a different sound stream, and if the recognition 

mechanism had access to only one sound stream, then it would not have been 

possible to recognize the vowel pre,sent. The recognition mechanism must have 

access to both sound streams, so that it can put the information back together 

and correctly classify the incoming sound. 

Even though the recognition mechanism correctly identified the input as a 

word, it did not reverse the decision of the separation mechanism that there were 

two sounds present. Since each formant was excited by a different fundamental 

frequency, the separation mechanism used the periodic information to decide that 
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there were two sounds present. Neither formant alone could be classified by the 

recognition mechanism, but the two formants together made up a vowel. The 

decision of how many sounds are heard is made based on the acoustic cues of the 

incoming sound, and although the recognition mechanism may disagree with the 

results of the separation processing for classification purposes, it does not change 

the perception about the number of sounds present. 

Both the experiment described above and other experiments have shown that 

the recognition system does not function by simply classifying the 'desired' signal 

alone. Experiments [Bregman 1978d] have shown that the auditory interpretation 

system must have access both the 'desired' signal and the 'interfering' signal in 

order to classify an incoming sound correctly. If a section of a continuous pure 

tone is chopped out of a signal and replaced by a wide band noise burst' (whose 

onset and offset match the section of the tone that was extracted), the tone will 

be perceived as continuing through the noise. The maximum length of the noise 

segment for which the tone will be heard as continuing through the noise is roughly 

250 to 300 msec [Rasch 1978]. If a segment of the pure tone is chopped out of the 

signal and no noise is added to fill in the silent interval, the tone will be heard as 

stopping and then restarting at a later time. Also, if the noise that is added to fill 

in the gap does not fill up the whole silent interval (the noise st.arts after the tone 

has stopped and stops before the tone starts again), the tone will not be heard as 

continuing through the noise. 

These experiments demonstrate that the classification system uses both 

sounds present to interpret which sounds were there. If the recognition system 

had access only to the tone, it would not hear the tone continuing through the 

noise (when the noise completely fills the silent interval). The recognition system 

must have access to both separated sounds present to conclude that part of one 

sound is missing because it was masked by another sound. 

This point is nicely illustrated in the "'{isual domain in figure 2.2 and figure 

2.3 [taken from Bregman 1981]. In figure 2, one can see only one part of the visual 

representation since the occluding figure is not present. In figure 2.2, it is difficult 

to determine what is present in the picture. In figure 2.3 where the occluding 
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figure is present, the picture is much easier to interpret. 

These examples demonstrate that the auditory system does not represent 

the desired signal and ignore the noise as current enhancement techniques do. 

The auditory system represents and processes both the signal and the interfering 

sounds to a high level. This point will be also be discussed in section 2.4.5. 

Sound recognition consists not only of the classification of what sounds are 

present, but of determining when some part of the acoustic input is missing, or 

which acoustic segment is present that does not belong. How a recognition mech­

anism would determine that a part is missing from the current sOWld or belongs 

to the other sound is a difficult question that remains Wlanswered and is beyond 

the scope of the current research effort. It appears that the recognition system 

required by this approach to sOWld separation is very similar to the recognition 

system needed for the visual recognition of objects. The recognition of objects 

with missing or extra line segments in the visual domain is similar to the sound 

recognition problem of recognizing a sound segment with missing or extra events. 

Experimental results have been presented in this section which demonstrate 

that the 'recognition' mechanism does much more than classify the incoming sound 

patterns into categories. When sOWlds cannot be separated on the basis of their 

acoustic cues, it is still possible for the auditory system to identify the different 

simultaneous sounds that are present. Other experiments demonstrated that even 

when the separation mechanism does use acoustic information to divide an incom­

ing signal, the recognition mechanism may put the separated output back together 

for the classification of the sOWld (as if the sOWld had not been separated). The 

recognition system must have access to both separated sOWlds present to know 

that part of one sOWld is missing because it was masked by another sOWld. SOWld 

recognition consists not only of the classification of what sOWlds were present, but 

of determining when some part of the acoustic input is missing, or which acoustic 

segment is present that does not belong. 
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Figure 2.2: Only the picture fragments which were not pccluded are shown. [Breg­
man 1981] 

2.3.3 Limits of Auditory Sound Separation 

In Cherry's experiments (where people attempt to separate two simulta­

neous speakers), listeners reported that the task was very difficult. Listeners 

would need to concentrate very hard on the material, and listen repeatedly to 

the recording of two people speaking simultaneously. After playing the recording 

many times, listeners were able to separate the incoming sounds fairly well. If the 

messages from each of the two speakers were a series of cliches (contained no long 

contextual strings), "message separation appeared impossible" [Cherry 1953]. 

The experimental results of Warren [1971, 1972, 1974] (discussed in section 
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Figure 2.3: Both the picture fragments and the occluding blob are shown. [Breg­
man 1981] 

2.3.1.6) imply that linguistic processing plays an important part in the separation 

of sounds. If phonemes are deleted and replaced with a loud noise, listeners will 

hear both the noise and the phoneme that was deleted. When the auditory sys­

tem has a difficult time in acoustically separating two sound sources, the listener 

may use linguistic contextual information to perform phonemic restorations of the 

missing sound. Since listeners perceive the phoneme as if it were actually present, 

this might lead a listener to perceive that the sounds were easily separated, while 

iIi fact the auditory system was unable to estimate the masked sounds using acous­

tic information. Although people may believe that they can separate sounds from 
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interfering sounds with apparent ease, these experimental results indicate that 

sounds which are perceived as separated by the auditory system do not corre­

spond to sounds that can be acoustically separated. It demonstrates that people 

perceive their models of what sounds are present, and not 'the acoustic information 

obtained from the separation processing. -

The fact that people perceive their models of what information is present, 

and not what they actually separate using acoustic information, makes it practi­

cally impossible to determine the limitations of auditory separation using acoustic 

information cues. 

Even though it may be difficult to determine the performance level of the 

auditory system, there are certain sounds that the auditory system cannot sepa­

rate. If there are two sound sources and each sound source is a steady state sine 

wave of the same frequency, it is impossible to determine the amplitude of each 

sine wave. Similarly, two steady state noise-like sounds are impossible to separate. 

The sounds that are to be separated must differ along some dimension. 

This section has shown that the auditory system uses acoustic differences 

in pitch, pitch dynamics, onsets, offsets, and amplitude modulation to distinguish 

between the different sounds it hears. It also uses visual information and linguistic 

information to aid in the separation of the sounds that it hears. Although we may 

not be able to determine the performance levels of auditory acoustic sound sepa­

ration, we can explore how the auditory system uses this information to separate 

the sounds that it hears. The next section will review the mechanisms that the 

auditory system uses for the separation of sounds. 

2.4 Modeling Auditory Sound Separation 

The previous section has shown that different information sources are used 

in the separation of sounds; this section will focus on how that information is used. 

It will focus on the representations that the auditory system uses, and will discuss 

different ways that the information cues can be used to separate the incoming 

sound. 
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2.4.1 Definition of Terms 

This author hypothesizes that there are three different levels of the auditory 

system's representation of sounds at different points in the separation processing. 

These levels are called 'Neural Event', 'Group Object', and 'Sound Stream'. These 

terms are defined below: 

Neural Event: 

Group Object: 

Sound Stream: 

An event occurs whenever a cochlear neuron fires. This 
neural encoding of an incoming sound is the fundamental 
quantity manipulated by the auditory separation system. 
(see section 3.2 where the relation between this even~ and 
auditory neural arrays is explained) 

A group object is a collection (across both frequency and 
time) of neural events, having similar properties, that 
are perceived as a unit. It is an intermediate level in the 
representation of sounds and corresponds to the natural 
segmentation of the incoming sound into frequency-time 
regions that have similar properties. 

A sound stream is an internal acoustic representation of 
a particular sound source, which consists of a temporal 
succession of group objects. Group objects that are as­
signed to a given sound stream are thought to or·iginate 
from the same sound source. 

Incoming sounds are encoded by the auditory system by using a neural 

representation. The firing of a neuron is the basic object manipulated by the 

auditory system in the separation of sounds. Each event has certain information 

associated with it that depends on the relationship between this event and other 

neural firings (such as the simultaneous firing of other neurons, or the time between 

one neural firing and the previous firing of this same neuron). The way that 

neurons encode an incoming sound is discussed in more detail in the next section. 

By describing a sound as consisting of many different local events, a system 

can analyze the incoming sound by finding relationships between the different 

parts. It is this similarity in the features of the different events that implies a 

causal relationship between them. It is this relationship that binds the events 
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together, which allows them to be interpreted as coming from the same sound 

source. 

Events are not directly assigned to a sound stream. Events with similar 

properties are joined together into an intermediate representation called a group 

object. It is these group objects that are assigned to one sound stream or another. 

The reason for the intermediate representation is that the neural events do not 

act independently, but act as a cohesive unit. 

The presence of an intermediate representation can be seen in several differ­

ent experiments. In Bregman's streaming experiments (see section 2.3.1.3), pure 

tones are assigned to either one sound stream or another. A tone is never split 

where one part of the tone. is assigned to one sound stream and another part is 

assigned to a different sound stream. Each tone behaves as a cohesive 'unit' or 

'group' where all its events (which result from the response of the cochlear model 

to that tone) are assigned to the same sound stream. 

The example of a male speaker saying the digit /three/ followed by a female 

saying the digit /seven/ was discussed in section 2.3.1.6. When the auditory system 

hears the male vowel /ee/ from the digit /three/, all the events are periodic and 

form a repeated structure. After the vowel / ee/, the auditory system encounters 

an onset of fricated energy and a series of events that have no periodic structure 

to them. These incoming nonperiodic events are grouped together and this group 

object (whose phonemic representation is an /s/) of nonperiodic events is initially 

assigned to the same sound stream as the other sounds of the same speaker. When 

the periodic segment /even/ from the female digit /seven/ is heard, the auditory 

system changes the assignment of the group object /s/ from "the male speaker to 

the female speaker. The assignment of events (which represent the fricated energy 

of the /s!) to one sound stream or the other are manipulated as a unit and not 

individually. 

At the highest level of a sound's representation is the sound stream. A 

sound stream is the internal representation that corresponds to a sound source 

that humans hear. Group objects are assigned to a sound stream if the auditory 

system concludes that the group object represents a sound that emanated from 
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the appropriate source. 

2.4.2 The Neural Encoding of Sounds 

The transformation of sounds into a neural representation occurs through 

a series of complex mechanisms. Sound is transformed from pressure variations 

in the air into mechanical motion at the eardrum (ty~panic membrane). The 

vibration of this membrane moves several small bones in the middle ear cavity. 

These bones are also attached to the oval window of a fluid-filled chamber (the 

cochlea or inner ear). The vibrations of this oval window causes the fluid in the 

cochlea to move, which in turn causes the motion of another membrane (the basilar 

membrane). Attached to the basilar membrane is an intricate structure of cells 

(the hair cells of the organ of corti) which are in turn connected to the neurons 

that encode the incoming sound into neural firings. [Yost & Nielsen 1977]. 

One end of the basilar membrane responds best (large displacements in the 

membrane) to high frequency stimuli, while the other end of the basilar membrane 

responds mostly to low frequency stimuli. The 'place' along the length of the 

basilar membrane is an important dimension, closely related to the frequency that 

causes the maximum displacement of the membrane. Attached along the length 

of the basilar membrane are approximat'~!y 30,000 neurons [Chow 1951] which 

encode the incoming sound. 

The length along the basilar membrane is often called the place dimension. 

Neurons along the length of the basilar membrane are organized in a 'tonotopic' 

manner (i.e. with place mapping to tone frequency). The place dimension along 

the basilar membrane is preserved through many auditory regions in the central 

nervous system. "It is unlikely that place along the basilar membrane would be 

preserved through successive levels of central processing if it were not an important 

parameter of the internal representation of sound." [Young & Sachs 1979] 

At low stimulus intensities, auditory neurons do not increase their neural 

firing rate above their spontaneous level (the firing rate with no signal present). 

Rather, they tend to synchronize the spontaneous neural firings with the motion 

of that place on the basilar membrane [Johnson 1980]. As the sound's intensity 
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increases, the neurons increase both ~he synchrony of the firings and the firing 

rate. Above a certain amplitude level, a neuron will reach a maximum in the 

'synchronization index' (degree of phase-locking of neural firing with stimulus) 

and will approach "its maximum rate of neural firing. 

The intensity of a tone required to make a neuron change its firing pattern 

from the spontaneous firing pattern is measured as a function of the tone frequency 

and is plotted as a 'tuning curve'. Each neuron has a 'characteristic frequency', 

which is the frequency for which the least amplitude is required to change its firing 

pattern. The high frequency slope of a tuning curve (the frequency side above the 

characteristic frequency) is typically 100 to 400 dB / octave; the low frequency side 

of the tuning curve will typically flatten out at a level approximately 40 dB above 

the neural threshold [Sachs & Abbas 1974]. 

The temporal fine structure of a stimulus is maintained in the phase-locking 

of neurons to the sound [Javel 1980, Rose et al 1971]. Period histograms (the 

number of neural firings in each time increment of a periodic stimulus) shows a 

highly significant correlation between the positive amplitude of the stimulus and 

the number of neural firings recorded at that time. 

The observed response of neurons to periodic steady-state vowels [Young & 

Sachs 1979] can be understood as follows: at low levels, the spectral shape of the 

vowel can be discerned from either the average firing rate of an array of fibers or 

from the synchronized rate. At higher levels, the fibers have saturated, and 'the 

average rate will no longer yield the spectral information. The synchronization of 

neural firings with a vowel's harmonics can be used to reveal the spectral shape, 

even in spite of interfering random noise, whereas average rate will not. 

For steady-state vowels whose intensity is less than 60 dB SPL, those neurons 

whose characteristic frequencies are dose to the formants of the vowel will have 

a firing rate which is greater than other neurons. The spectrum of the vowel 

can be characterized by a profile of the neural firing rate as a function of place. 

However, for sounds whose intensity is much above 60 dB SPL, the firing rate 

profile saturates at the maximum firing rate. Average firing rate no longer reflects 

the spectrum of the incoming vowel. The phase-locking of the neurons to the vowel 
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harmonics, however, is maintained at high stimulus levels [Sachs & Young 1980]. 

These experimental results "indicate that the spectrum of a sound is not 

conveyed to higher nervous centers of the auditory system by way of the (average) 

discharge rate in different nerve fibers. It is' more likely that such information 

is carried in the time pattern of the discharges of single auditory nerve fibers" 

[Moller 1981]. Voigt, Sachs, and Young [1981] also concluded that "The temporal­

place representation of vowel spectra is superior to the rate-place representation 

at moderate to high vowel levels. In addition it retains information about vowel 

spectra in the presence of background noise. The rate-place representation does 

not reflect the formant structure of the vowel even at moderate signal-to-noise 

ratios." 

Based on this understanding of the neural encoding of an incoming sound, 

it is possible to understand why Scheffers [1982] observed that people could iden-

. tify two simultaneous voiced vowels (even though they were generated with the 

same fundamental frequency) better than two simultaneous unvoiced (whispered) 

vowels. For the unvoiced vowels, the auditory system cannot accurately encode 

the spectrum of the two vowels in terms of neural firing rate. It can encode the 

simultaneous voiced vowels with more accuracy, since the neurons use timing in­

formation to convey spectral information. 

Our kn'owledge about the neural encoding of a sound has been gained through 

a large number of experiments done over many years. However, our knowledge 

of how the auditory system uses this information is minimal [Moller 1979]. This 

lack of information about the central nervous system makes it impossible to accu­

rately model any detailed mechanisms that the auditory system might use in the 

processing of sounds. 

Modern spectral analysis techniques may accurately measure the spectral 

amplitude of speech sounds, but the auditory system relies heavily on timing 

information to encode the speech. At moderate levels, it does not rely on rate 

information, but uses the timing of the neural firings to represent the sounds that 

it hears. The next section will deal with how the auditory system uses this timing 

information for the interpretation and separation of sounds. 
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Figure 2.4: Licklider's neural autocorrelator. The original signal is autocorrelated 
with the delayed signal, and the output is a nmning integral. 

2.4.3 The Processing of Periodicity Informatio.n 

This section is concerned with how the auditory system computes th~ period 

of repetition of a periodic sound. A previous section showed that information 

about pitch and pitch dynamics is useful for separating sounds. This section 

will review the mechanisms that the auditory system uses for computing pitch 

information, and how it uses the information about periodicity for separating 

sounds. 

There are several major theories of how the auditory system perceives pitch. 

This section will review the theories of Licklider and Goldstein in their models of 

auditory pitch detection. It will review the experiments which shew how Licklider's 

model is consistent with the use of timing information by the auditory system. It 

will also show how this author has extended Licklider's model so that this periodic 

information can be used for the separation of sounds. 

In Licklider's theory of pitch perception [Licklider 1951, 1959], the output of 

each 'place' along the basilar membrane is passed through a neural autocorrelator 

mechanism. The neural output of a single place is passed through a tapped delay 

line, and at each tap computes one value of the autocorrelation function of the 

delay-line output with the current neural output of the same neuron. A diagram 

of this computation is shown in figures 2.4 ~d 2.5. 

The major difficulty with this theory is that it does not specify the details 

of how the autocorrelation information in each place location is combined to de­

termine the pitch period. It suggests that a neural net interprets the incoming 
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Figure 2.5: Overall autocorrelation mechanism. The autocorrelation of the 
cochlear output is computed at each place location. The dimensions of this rep­
resentation are place vs. autocorrelation delay 

information to determine the pitch period, but the theory does not specify the 

algorithms used. 

Goldstein's model of pitch perception [Goldstein 1973] estimates the fre­

quencies of the harmonics (obtained from the spectrum analysis) and computes a 

maximum likelihood estimate of the fundamental frequency from these harmonic 

values. The constraints that this theory imposes are nicely summarized by De 

Boer [1975] as follows: 

• Only aurally resolved components contribute. 

• The phase relations are irrelevant. 

• Only the presence of a component is reported - the amplitude is irrelevant 

(wi thin limits). 

• The information about component frequency is basically inaccurate; a non­

negligible variability is involved. 

• It· is assumed that the information received corresponds to stimuli in which 

the components are successive harmonics. 

50 

1--

I 
L 

I 
I 



1-

There have been several implementations of Goldstein's theory of pitch per­

ception [Willems 1983, Duifhuis et al 1982, Scheffers 1983, Allik et al 1984]. The 

difficulty with all these implementations of the theory is that they compute the 

frequencies of the harmonic components from the spectrum using the amplitude 

of the spectrum along the place dimension .. As we have seen from the section 

on the neural representation of information, the auditory system does not encode 

the amplitude of a vowel's harmonics in the average firing rate information at 

moderate to high intensity levels. 

Instead of obtaining the harmonic frequencies from the amplitude spectrum, 

Goldstein [1977] has suggested that the harmonic frequencies are obtained from 

interspike interval histograms. The timing information at each place location 

would be used to compute the harmonic frequencies present. The use of timing 

information in Goldstein's theory of pitch perception makes this theory similar to 

Licklider's theory of pitch perception. One difference is how the information from 

different basilar membrane place locations are combined to form an estimate of the 

pitch period present. Goldstein's theory imposes constraints that the harmonics 

must be resolvable and must be successive harmonics in order to compute the 

pitch period. 

There is a great deal of experimental evidence which supports the idea that 

the timing information at each place location is used to compute the period of 

repetition of the sound. Experiments on the perception of a pitch period for am­

plitude modulated noise [Houtsma et al 1980, Patterson et al 1977] support the 

temporal processing of information for the computation of periodic information. 

Other experiments [Moore 1977] show that the harmonics do not have to be resolv­

able (as required by Goldstein's theory) for the auditory system to compute the 

pitch of a harmonic complex. These experiments also show that the relative phase 

between the unresolved harmonics changes the strength of the pitch percept (as 

predicted by the temporal theory). The upper frequency limit to the perception of 

'residue pitch' of roughly 2500 Hz [Wightman 1973] is explained by the decrease 

of synchronous firing in the auditory system at these frequencies. 

In addition to these psychoacoustic experiments which support the use of 
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temporal information in the computation of pitch, there is also evidence for Lick­

lider's neural autocorrelation mechanism. Experiments [Langner 1981, Rose & 

Capranica 1984] show that many neurons are tuned to the perception of ampli­

tude modulated tones. 

Licklider's model can be extended to use the periodicity information for the 

separation of sounds. The computation of an autocorrelation function at each place 

location has the advantage that the periodic information is a local computation. 

Therefore, every 'place' can provide information about the periodic information 

that is present at that location. In Broadbent and Ladefoged's experiments [1957], 

when two formant resonators are excited by pulse trains with different periods of 

repetition, the place location that phase locks onto the first formant has a different 

autocorrelation function from the place location that phase locks onto the second 

formant. It is hypothesized that this difference in the autocorrelation functions is 

used by the auditory system to determine that these formants are not generated 

by the same sound source. 

The autocorrelation model also allows for the separation of the higher har­

monics not resolved by the auditory system. These place locations, (which phase 

lock onto the AM waveform generated by the higher harmonics), compute an 

autocorrelation f1ll1ction that shows a peak at the pitch period just like the au­

tocorrelation of the lower harmonics. It is this peak at the pitch period of each 

place location that is used by the auditory system to separate the incoming sound 

based on periodicity information. 

Research also focuses on the capabilities of the auditory system to separate 

and recognize two simultaneous vowels with different f1ll1damentals. Experiments 

by Scheffers [1979, 1982], and Brokx and Nooteboom [1982] chart recognition per­

formance as a function of the difference in pitch between the two vowels. The 

result of these experiments [Scheffers 1982] indicates that separation and subse­

quent recognition performance is significantly better for simultaneous vowels with 

strongly different spectral envelopes than for vowels with relatively similar spec­

tral shapes. However, mo ,Is of sound separation based on pitch mechanisms that 

assume fine frequency re: Ition [Goldstein 1973, Parsons 1976] cannot account 
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for this effect. These methods rely on the resolution of the harmonic components 

present in the frequency spectrum and the subsequent assignment of these compo­

nents to the different sound sources. Whenever it is possible to resolve a harmonic 

component, changing the amplitudes of the harmonics of the other sound will have 

little effect on the resolution of that harmonic component. Therefore, harmonic 

selection (resolving the different components by performing a fine frequency anal­

ysis, and then computing the amplitude of each of the harmonic components of the 

periodic sound) cannot account for the observed degredation in performance by 

the human auditory system when the vowels have a similar spectral shape. This 

result supports the view that, for vowel recognition, the human auditory system 

does not perform fine frequency resolution of the harmonic components present. 

This section has argued that the auditory system uses the timing information 

present at each place location to compute an autocorrelation function. In this 

autocorrelation function is the periodic information present at each place location. 

Licklider's model does not precisely specify how this information is combined in 

the auditory system for the determination of pitch. 

Each place location that has similar periodicity information can be inter­

preted by the auditory system as coming from the same sound source. Those 

place locations that have incompatible autocorrelation functions are interpreted 

as coming from different sound sources. The next section will discuss how the au~ 

ditory system uses this periodicity information to combine all the place locations 

that belong together into the same 'group object'. 

2.4.4 The Segmentation of Speech and Group Objects 

A group object is a collection of events which, because of similar properties, 

are perceived as a unit. It is an intermediate level in the representation of sounds 

and corresponds to the natural segmentation of the incoming sound into frequency­

time regions that have similar properties. Group objects assigned to the same 

sound stream are thought to originate from the same sound source. 

Researchers have recently begun to focus on the grouping of the visual per­

ceptual field. Pomerantz [1981] says that "The purpose of grouping is to divide 
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the perceptual field into units, but what exactly is a unit? ... Any natural unit is 

defined by its indivisibility. Seldom is this indivisibility absolute, as the unending 

search for the absolute, fundamental particle in physics well attests. Nonetheless, 

when a complex structure is broken down into parts, some breakpoints are more 

likely than others, and these serve to demarcate natural units." 

Research is currently exploring the possibilities that there is some innate 

mechanism for dividing the acoustic flow into discrete segments [Chistovich et al. 

1975]. The segmentation of an acoustic input into discrete segments that can 

be assigned to sound streams is the mechanism used by the auditory system to 

separate sounds [Broadbent 1977]. 

At the level of grouping events into group objects, there is no notion of 

how many sounds are present. Events with similar features are grouped together. 

After these events have been grouped together into a group object, these objects 

are then assigned to sound streams based on which sound source is believed to 

have created these events. Two reasons why events cannot be directly linked to a 

sound stream will now be presented. 

1. The decision concerning which sound stream a segment belongs to can change, 

and this change reverses the decision on all the events in the group object. In 

the 'three-seven' example discussed earlier, all the neural event;; that com­

pose the frication sound /s/ were assigned as a unit to one sound stream, 

and then later to a different sound stream.. 

2. Events cannot be directly assigned to a sound stream because a sound stream. 

does not have a single set of properties to which an event can be linked. 

Speech is composed of short segments that have different properties, such 

as plosion, frication, periodic regions, and silent intervals between speech 

segments. Since the characteristics of a speaker's voice will change between 

the different types of acoustic segments, the properties of the sound stream 

that represents this speaker will change. It is hypothesized that the audi­

tory system first groups those events in frequency-time regions with similar 

properties together, and then makes a decision about which sound source 

this group object belongs to. 
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Events are grouped into an intermediate representation called group objects, 

which, in turn, are linked to a sound stream. Acoustic information is used to assign 

events to group objects. Information about pitch, pitch dynamics, onset, offset, 

and amplitude modulation are used to assign events to the different group objects. 

The specific details about how the auditory system creates and uses group objects 

may not be known for many years. The next three sections will deal with issues 

and details that are important for the construction of a model of the auditory 

separation system. 

2.4.4.1 Creation of a Group Object 

A group object that represents a speech segment extends across both fre­

quency and time. Many details about the creation and use of group objects are 

not known at the current time. A group object is defined as 'a collection of events 

with similar properties that are perceived as a unit'. The key word in the above 

definition is 'similar'. What constitutes events that are similar? How does one 

differentiate between events that are similar and those that are different? 

Darwin's experiments [1977] show that if pitch changes discontinuously, each 

segment with a sufficiently different pitch is assigned to a different sound stream. 

Therefore, if the events undergo a pitch discontinuity, a new group object is formed. 

Experiments by Rasch [1978] show that the auditory system will interpret two 

onsets at different times as two different group objects. 

A new group object is created in the following circumstances: 

• At the onset of a new segment . 

• When the incoming neural events have different properties from any existing 

group object. 

It is difficult to decide group object boundaries. The following difficulties 

are described along with a proposed solution: 

1. A tone is masked during the middle of its duration by a loud masking noise-. 

Does the auditory system represent the parts of the tone before the noise 



and after the noise by a single group object or by two group objects? It 

is hypothesized that the auditory system uses two distinct group objects to 

represent the segments of the tone. These group objects can then be assigned 

to the same sound stream or to different sound streams. 

2. A periodic segment undergoes a spectral discontinuity (such as a vowel-nasal 

boundary) but the pitch contour remains continuous. Does the spectral dis­

continuity cause the in,put to be parsed into separate group objects? It is 

hypothesized that the continuity in the pitch dimension is the importantfac­

tor and will therefore not allow the different regions in time to be assigned to 

different sound streams even though there is a spectral discontinuity. There 

may be a phonetic bOWldary that is perceived at the spectral discontinuity, 

but for the assignment of segments to sound sources, no boundary exists at 

the spectral discontinuity. 

3. There is a discontinuity in the slope of the pitch conour of a voiced segment. 

Does a change in pitch dynamics cause the formation of a new group object? 

It is hypothesized that if the pitch contour is continuous, no segmentation at 

the sound separation level occurs. The change in the slope of the pitch of a 

vowel might perceptually segment the two regions but the different periodic 

regions (with different pitch slopes) will not be assigned to different sound 

sources. 

The higher levels of auditory processing may influence the creation and 

interpretation of the group objects. If a weak onset occurs during the presence of 

one sound source, the auditory system may not be sure whether this onset is a 

random fluctuation from the sound already present or whether it constitutes the 

beginning of another sound source. The higher levels of processing' can influence 

the decision of when to create a new group object, and can make a difficult situation 

easier by using more than just the acoustic information present. 
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2.4.4.2 Simultaneous versus SeQ,uential Grouping 

Events across time at the same frequency that have similar properties are 

assigned to the same group object. Events at different frequencies at the same 

time which have similar properties are assigned to the same group object. This 

section is concerned with what happens when the decisions of different information 

sources which group events at one frequency and time with a group object conflict. 

Bregman's experiments [1978b] (described in section 2.3.1.3) show that each 

of three tones acts as a unit, and each tone is assigned as a unit to one sound 

stream or another. Experiments by Darwin [1984b] show that if a pure tone 

(whose frequency is the same as the harmonic of a neighboring steady state vowel) 

is followed by a steady state vowel, the vowel's harmonic 'will be perceptually 

segregated from the vowel. The vowel's harmonic will be a multiple of the same 

fundamental as all the other harmonics of the vowel. However the difference in 

onset or offset between this harmonic and the other harmonics indicates to the 

auditory system that this harmonic does not belong to the same sound stream. 

Since the auditory system assigns this harmonic to a different sound stream, it 

must not be assigned to the same group objects as the other harmonics. 

These experiments might lead one to believe that the auditory system first 

assigns events from the same frequency region together, and then assigns different 

frequency locations that have the same onset, offset, amplitude modulation, and 

pitch dynamics to the same group object. The difficulties with this approach are: 

1. Events at the same frequency location cannot be linked by spectral continuity 

alone. Experiments by Darwin [1977] show that when the pitch changes 

discontinuously, the periodic regions on either side of the pitch discontinuity 

are assigned to different sound streams. Therefore, events at one frequency 

that are linked through time must use other features, such as pitch, to assign 

them to the same group object. 

2. Experiments mostly deal with the perception of simple sounds. It is very 

difficult to know how the auditory system links events through time when the 

spectrum is changing and the pitch is arso changing. The auditory system 
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follows both formant motion (transitions) and pitch change (intonation) at 

the same time. 

This problem of deciding what events at one time belong with to those at 

the next instant in time is known as the correspondence problem. [Ullman 1979]. 

When a harmonic starts at a different time from the rest of the harmonics, if all 

the events which phase lock onto that harmonic are to be assigned to the same 

group object, the auditory system must maintain a correspondence through time 

of the neural events which are responding to this harmonic. It is a very difficult 

problem to maintain the correspondence from one time to the next of the neural 

representation of each of two sounds. 

In the computational model of auditory sound separation (described in chap­

ter 3), different frequency regions at the same time are assigned to the same group 

object if their instantaneous properties are all consistent with each other. Different 

frequency regions that have the same pitch period are assigned to the same group 

object. A difference in onset or offset of different harmonics will not affect the 

assignment of the harmonics during the middle of the vowel to the group object. 

As long as the pitch is continuous through time, the different frequency regions 

will be assigned to the same group object. 

2.4.4.3 Filling in the Gaps 

When the auditory system hears a sequence, such as a tone, a noise burst 

and then the same tone again, it perceives the tone to continue through the noise. 

When a collection of events (such as the noise burst) is assigned to a different sound 

stream, it leaves a gap in the other group object present. If the auditory system 

hears the tone continuing through the noise, it must perceptually synthesize the 

tone at some level. Does the auditory system perform this synthesis at the acoustic 

level of sound separation or at the higher levels of separation? 

A series of experiments by Warren [1971, 1972, 1974] discussed the synthesis 

and perception of the missing phonemes which has been called 'phonemic restora­

tions'. The auditory system cannot predict at an acoustic level what the missing 

phoneme is. The perceptual synthesis must therefore occur at the higher levels of 
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a sound's interpretation. The higher levels must have access to the representation 

of both sounds in order to know that the segment is masked rather than missing. 

2.4.5 Sound Streams 

Work on selective attention has dealt primarily with how a person focuses 

on one sound in the presence of other sounds. Some theories of attention are 

characterized by the 'early filtering' models (filtering here refers to the separation 

of one sound from other sounds) of Broadbent [1958] and of Treisman [1960]. The 

sounds are filtered or separated by focusing on different junctional channels (e.g., 

an internal channel which represents the location of the desired sound source, pitch 

channel, etc.). In other theories of attention, such as the model of Deutsch and 

Deutsch [1963], the separation of sounds does not occur until late in the processing 

(at least the semantic level) of the sounds. All of these models are quite general, 

and lack specific details on how any of the different operations are performed. 

The concept that two speakers could be separated from each other by fo­

cusing attention on the output of a functional channel cannot account for how 

two different speakers can be separated monaurally. Since speech is composed of 

periodic segments, nonperiodic segments, bursts, and periods of silence, one can­

not focus one's attention on a single functional channel, since. the sound from a 

single speaker will change from one channel to another. Phonetic and linguistic 

knowledge must aid the selection process to determine which segments belong to 

the same speech stream. 

This section will study how the auditory system creates and uses sound 

streams to represent the different sources that it listens to. It will focus on the 

number of sounds the auditory system can process at a. single time. It will also 

deal with how group objects are assigned to different sound streams. 

2.4.5.1 Is There a Maximum Number of Auditory Sound Streams? 

How many sound streams does the auditory system use in sound separation? 

Does the auditory system have one sound stream for each of the sound sources 

that are present, or is there one special sound stream which is the figure, while 
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all the other sounds are lumped into the background stream? How many sound 

streams are there when many sounds are present? 

If there is one sound present, then only one sound stream is needed to 

represent this sound. If there are two sounds present, then there will be one sound 

stream to represent each of the sound sources present. However if there are more 

than two sounds present, does the number of sound streams increase beyond two? 

In the figure-ground approach, one sound stream represents the 'desired signal' 

(which is being focused on) and the other sound stream represents all the other 

sounds that are present. All acoustic events not assigned to the desired sound 

stream are put into the 'interfering' sound stream. The two sound stream model 

is attractive because one sound stream is labeled the desired signal, or figure, and 

the other sound stream represents the interfering sound, or the background. 

Another option is that the auditory system can maintain more than two 

sound streams at a single time. The maximum number of sound streams would be 

limited by the processing resources of the auditory system. In this case, if three 

or more sounds are present and the auditory system has enough processing power 

(depending on the complexity of the sounds), then the acoustic events can be 

assigned to the appropriate sound streams that correspond to the sound sources 

that they have originated from. 

At some level in the processing hierarchy, there may only be one sound 

source that is focused on. This view is held by Moray-[1970] in his book on the 

selective nature of attention in speech and vision: 

"At any moment a listener is sampling only one message. All others 

are totally rejected." [Moray p. 190] 

The fact that one message is being focused on (receiving special processing re­

sources) does not imply that the number of sound streams present is limited to 

two. 

If one is able to determine that the auditory system is capable of modeling 

many sounds at the same time, then this would imply that there are more than two 

sound streams present. The fact that many sounds could be modeled would not 

necessarily contradict the hypothesis that a single sound receives special processing 
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resources. This is because the special processing that this 'focused' signal receives 

can occur after the incoming sound is partitioned into the different sound streams. 

Although most subjects who participate in shadowing experiments (where 

subjects are instructed to listen to one message and ignore the other messages 

present) are typically not able to report much about the unattended message, 

experimental results indicate that the unattended message is processed at a se­

mantic level even when the subject cannot report the contents of the message. 

In the experiments by Von Wright et a1. [1975], subjects were conditioned by 

pairing electrical shocks with certain words. The experimenters then recorded' 

the galvanic skin response (GSR) of the subject during a shadowing experiment 

where no electric shocks were given. They found that the subjects showed a re­

sponse to the conditioned word, as well as smaller responses to synonyms of that 

word and acoustically similar words. These results support the idea that even the 

unattended message is processed at a semantic level, even when a subject cannot 

report what he has heard. Results from an experienced subject in a shadowing 

task [Underwood 1974] indicate that a person is able to monitor and respond to 

two messages at the same time. 

One can view Wright's experimental results as showing that each sound 

stream is processed until at least the semantic level which is similar to the view 

held by the Deutsch and Deutsch model of attention [1963], the Neisser model 

[1967], and the Shiffrin and Schneider's model [1977]. Each sound is represented 

in its own sound stream and is processed to some level by an automated parallel 

algorithm. This viewpoint does not mean that one of the messages will not receive 

special processing, but that each message receives separate processing to some 

level. 

Other experimental evidence indicates that separation p"erf<;>rmance improves 

with knowledge about the interfering signal. Experiments by Hawkins and Presson 

[1975] showed that when a masker tone (a strong sine wave which makes it difficult 

to hear the other sound) was of a known frequency in auditory recognition masking 

experiments, the performance of a subject improved over experiments where the 

masker frequency was miknown. They concluded from their experimental results 
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that: 

"A selectivity process functions in the auditory system to diminish 

the effects of unwanted input prior to'that point in the system at which 

categorization occurs." 

The fact that subjects improved ill their performance when certain facts were 

known about the masking stimulus indicates that subjects used a model of the noise 

to increase their level of performance in separating the signal from the masking 

stimulus. 

Experiments by Triesman [1964] also indicate that subjects c~ model more 

than one sound and can use this knowledge to improve their performance in the 

separation of the desired message. In one experiment, subjects had to shadow one 

message in the presence of two interfering messages. The message to be shadowed 

appeared in one ear, while one interfering message was presented in the other 

ear, and the second interfering message was presented in both ears. The content 

of the interfering messages was varied, and the effect on the shadowing perfor~ 

mance was measured. Subjects showed slight improvements when both interfering 

messages were sequences of ascending digits, over the case when both interfering 

messages were prose. This result supports the view that both interfering sounds 

were modeled to some depth, and that the information from these models was 

used to improve the separation performance. 

Evidence has been presented that at least two simultaneous sounds can be 

modeled by the auditory system. Experimental results have also been presented 

to show that models of the interfering sounds can be used to increase separation 

performance. At some higher level of a sound's processing, one sound stream 

might receive special attention at the expense of the other sounds present. At the 

lowest level of processing, the auditory system can model more than one sound 

source. It would be difficult for one to claim that one sound stream has a special' 

advantage over the other sound streams. Although the figure-ground paradigm 

may be appropriate for the higher levels of sound understanding, it is not clear 

that the figure-ground analogy applies at the lowest levels of acoustic separation. 
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When a person is allowed to listen repeatedly to the same sound segment over 

and over again, he is capable of modeling many sound sources at the same time. -

This improvement in processing ability is facilitated both by additional processing 

resources (on each pass of the recording) and by having a model of some of the 

other sounds in the recording when listening to one of the other sounds present. 

The auditory system is able to hear three sound sources at a time if the sounds 

are simple enough and do not require much linguistic processing (such as a person 

speaking, air conditioning noise, and the ringing of the telephone). The ability to 

hear many sounds (either in repeated listening, or if the sounds are simple and 

repetitive in nature) led this writer to believe that the auditory system can create 

more than two sound streams at a time. 

2.4.5.2 The Creation of Sound Streams 

When does the auditory system decide that there is more than one s01ll1d 

present? There are two situations when the auditory system can decide if two 

sounds are present. If two simultaneous group objects are present (such as two 

simultaneous periodic sounds), the auditory system will assign each group object 

to a different sound stream. If two group objects are sequential in time (one follows 

another), and the auditory system cannot account for both group objects with a 

single sound model (a single sound source could not have generated these sounds), 

the auditory system will assign each group object to a different sound stream. 

An example of this would be a person speaking followed by the sound of a door 

closing. This determination that the two group objects could not have come from 

the same sound source uses linguistic or other contextual information about what 

sounds could be generated from what types of sound sources. 

2.4.5.3 The Assignment of Group Objects to Sound Streams 

After the events have been assigned to different group objects, the group 

objects are assigned to sound streams. The assignment of group objects to sound 

streams uses the information sources discussed in the beginning of this chapter. 

The ways that group objects are assigned to sound streams are summarized below: 
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Chapter 3 

A Computational Model of Sound 
Separation 

The construction of a computational model of auditory processing would be 

fairly trivial if we knew what operations were performed by the auditory system. 

The computer algorithms described in this chapter are only estimates of the actual 

algorithms used, since we do not know the precise details of how the auditory 

system operates. In the absence of exact knowledge, it is extremely difficult to 

determine from all of the possible mechanisms that could account for the auditory 

system's behavior, which one the auditory system actually uses. 

This chapter will describe the computer model that was developed to sep­

arate two simultaneous talkers. The model is based on the theory of auditory 

separation described in chapter two. The construction of this detailed model has 

raised many questions and issues, and has helped to evolve both an understand­

ing of what the auditory system is trying to accomplish, and how the system 

accomplishes its processing. 

3.1 Cochlear Filtering, Compression, Detection 

The input to the sound separation algorithms is a computer model of 

cochlear processing developed by Lyon (1982). In the cochlear model, an incoming 

sound signal (that is sampled at 16 khz) is filtered py an 85 channel filterbank. 

The filterbank, originally a series of second order canonic sections organized in a 
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Figure 3.1: Schematic diagram of the cascade-parallel filterbank 

cascade-parallel form, is shown in figure 3.1. 

By rearranging the poles, the filterbank has recently been reorganized as a 

cascade only form [Lyon 1984]. The use of a cascade-form filterbank allows for 

extremely rapid high frequency rolloff (greater than 200 db / octave) with a minimal 

amount of computation. The transfer function of each filterbank output resembles 

the shape of an auditory neuron's tuning curves [Sachs & Abbas 1974]. The 

bandwidth of a frequency channel's output was chosen to match the measurements 

of critical bands in the auditory system [Zwicker 1962]. The spacing between the 

center frequencies of each pair of filter sections is a parameter of the model, and 

can be set depending on how many channels are desired (the current spacing is 

one quarter of the frequency channel's bandwidth, or approximately one twelfth 

of an octave at high frequencies). Each filterbank output is maintained at the full 

s~mpling rate (16 khz). 

The amplitude of an incoming sound signal can vary over many orders of 

magnitude. To compress this tremendous dynamic range of the input, the output 

of each- filterbank is then processed through a coupled automatic gain control 

(AGe) mechanism [Lyon 1982, 1984]. The adaptive mechanisms of the peripheral 

auditory system are functionally modeled by several stages of AGe with different 

time constants at each stage. The four stages of AGe in the computer model 

have time constants of 640 msec, 160 msec, 40 msec, and 10 msec. The outermost 

AGe mechanisms have the longest time constant to adjust the overall sound level, 

while the innermost AGe loops have the shortest time constants for compressing 

fluctuations on a smaller time scale. 
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Figure 3.2: Top: A segment of a periodic speech waveform. Bottom: The output 
of the cochlear model. The waveform is time aligned with the cochlear output. 

Since auditory neurons respond only when the basilar membrane moves to­

wards the scala-media, the compressed filterbank output is passed through a half 

wave rectifier before the neural encoding stage. 

An example of the output of the cochlear model are shown in figure 3.2. 

In this picture, the amplitude of the positive output of each frequency channel is 

represented by the degree of blackness. 

The output of the cochlear model then, is 85 frequency channels, with each 

filterbank output remaining at the original sample rate of 16 khz. The output is 

kept at a high sampling rate to preserve the information present in the fine time 

structure of the output. This fine time structure will be used by the separation 

algorithms. By contrast, most other filterbank designs are concerned only with 

the envelope, or short-term average level of each frequency channel's output. 
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3.2 Event Representation 

The goal of the neural encoding of a sound is to preserve the timing and 

intensity information in the output of the cochlear model. Rather than model 

the neural encoding by a stochastic process that uses many neurons to probabilis­

tic ally encode the amplitude and timing information of a signal, a deterministic 

neuron model is used. The output of each frequency channel of the cochlear model 

(which is the compressed and half wave rectified filterbank output) consists of a 

series of positive waveform peaks. Each waveform peak looks approximately like 

the positive half of a sine wave, since each frequency channel's output (before rec­

tification) is a fairly narrow-band signal. The positive waveform in each frequency 

channel (between zero crossings) is encoded as a single event. The location of 

the event corresponds to the local peak in the channel's output. The amplitude of 

the waveform at the peak location and the area under the waveform between zero 

crossings are stored along with the peak time as properties of the neural event. 

Since the computer model's event encoding is not a probabilistic model of 

the neural firings in the auditory system, it does encode the timing and intensity 

information present in the cochlear model's output into an event representation. 

There are two important differences between this event encoding and a proba­

bilistic neural model. One difference is that the event encoding output resembles 

the behavior of an array of neural fibers. A neural model requires many different 

nerve fibers to adequately encode the intensity of an incoming signal while the 

event encoding used in this computer model explicitly represents the area and 

amplitude of the cochlear output. The second difference is. that this event en­

coding does not have a 'refractory period' (minimum time between neural firings) 

and will encode all the peaks in each frequency channel, while a neural model 

only fires at a rate below some maximum rate and decreases the synchrony of its 

firings with frequencies above 1 khz. The event encoding used in this model has 

the advantage of representing the timing and intensity information present in each 

frequency channel with little computational effort. 

An example of the event encoding of the simulated cochlear output is shown 

m figure 3.3. The amplitude and area features that are associated with each 
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Figure 3.3: Top: The cochlear model's output for a single frequency channel. 
Bottom: The event representation of that frequency channel. The properties of 
each event (amplitude and area of the corresponding waveform peak) are not 
shown. 

event are not shown in this figure. Figure 3.4 shows the transformation of the 

cochleagram into an event cochleagram. 

3.3 The Computation of Periodicity and the Co­
incidence Representation 

Periodicity is an important information cue that is used by the auditory 

system for separating sounds. Those neural events that have similar periodicity 

features can be viewed as coming from the same sound source. The computa­

tion of a local periodicity feature in this model is based on Licklider's theory 

[1951] of pitch processing in the auditory system. According to his theory, a 

neural structure computes an ongoing short-time autocorrelation function of each 

frequency channel's output. The neural structure delays each channel's output 

through a tapped delay line, and at each tap detects the coincidence of a pulse 

at the delay-line output with an undelayed pulse. A lowpass filter on each coin-
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Figure 3.4: An event cochleagram representation 

cidence detector output generates an equivalent time window for the short-time 

autocorrelation function. At a single time instant, the autocorrelation function is 

a two-dimensional array, parameterized by cochlear place (frequency), and by the 

delay parameter (repetition period). In Licklider's theory, this entire array repre­

sentation is then interpreted through an unspecified neural network to determine 

the pitch period. His theory was developed to explain how the auditory system 

computes the pitch of an incoming sound, and was not originally intended i;}.S a 

mechanism for sound separation. 

This approach is consistent with the evidence on the neural encoding of 

sounds presented in chapter two. Other theories of auditory pitch perception 

[Goldstein 1973, Wightman 1973] are mathematical in nature, and are not pre­

sented in a form that can easily use the neural encoding of sounds to compute 

pitch information. 

In Licklider's theory [Licklider 1951, 1959]' the output of each 'place' along 

the basilar membrane is passed through a neural autocorrelator mechanism. The 

details of how this neural autocorrelator works are not given. Another difficulty 

in implementing the theory is that there are. no details for how the periodicity 

evidence in different place locations is· combined to determine the pitch of the 
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incoming sOillld. Due to our lack of knowledge about how the auditory system 

computes the coincidence of neural events (for the purpose of periodicity compu­

tation), the way that the events are manipulated remains an open question. 

An autocorrelation type offunction, called t~e coinCidenc~ function (which 

computes the coinciding of neural events with previous neural events in a delay 

line) is computed for the event representations of each frequency channel as a mea- . 

sure of the periodicity of the events in that frequency channel. The coincidence of 

each neural event with previous neural events represents the periodicity informa­

tion about this event. When an incoming event is detected, the coincidence (see 

Table 3.1 for a definition of coincidence) of this event with all other neural events 

from this frequency channel within the last 24 msec is computed, and this peri­

odicity information becomes a property of this event. Every 10 msec, a weighted 

average of the coincidence function of all recent events is computed. Each event's 

-coincidence function is weighted by an exponential factor (time constant = 15 

msec) which depends on the time of the event and the time of the current aver­

age coincidence function. The channel's coincidence function therefore represents 

an average of the coincidence information of all recent events in that frequency 

channel's output. 

How are the properties of two events combined to compute the coincidence 

of two events? During the course of this research, several different formulas for 

combining the properties of two events were used. Of the four formulas that were 

used, the last formula in table 3.1 is the version currently used. The reasons for 

developing each coincidence formula are discussed below. 

The value of an autocorrelation function at zero delay is equal to the total 

energy of the signal being autocorrelated. The first coincidence formula was chosen 

so that the coincidence function of an event with itself is proportional to the energy 

of the event (by a factor of ~ when the positive peak of the cochlear model's output 

is approximated by a sinusoid). The value of the average coincidence function for 

each frequency channel at zero delay could therefore be used as an estimate of the 

energy in this frequency region. 

The frequency spectrum that was provided by this mechanism seemed some-
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Version C (event i1 event j ) C(event j1 event j) C(eventil ~eventj) 

1 y'areaj X ampi X Vareaj X ampj areaj X ampj I 2areaj X ampj 

2 yfareaj X yfareaj areaj 1 
v'iareaj 

3 ( ) (mjn(areai,arwj)) av area· area· X g I, 1 maz(areai,areaj) areaj ~area· 8 I 

4 ( ) (mjn(areai,area j ) ) 2 av area· area· X g " 1 maz(areai,areai) areaj 3 
16 areaj 

C( event j, event j ) is how the properties of event j and event j are combined for the 
computation of the event/s coincidence function. 

Table 3.1: Different ways that the properties of two events can be combined 

what fiat, and formant peaks were not as sharp as one would like. The reason why 

this first coincidence formula flatted the formant shape is that the sharp onset 

at the beginning of a pitch period (which is larger than the cochleagram of the 

rest of the pitch period), dominated the value of the coincidence function at zero 

delay. When looking at a picture of a cochleagram, the location of the formant 

becomes clear during the latter part of the pitch period (after the onset has had 

a chance to resonate and decay at the formant locations). The second formula 

for computing the coincidence of events was developed so that the value of the 

coincidence function at zero delay would be proportional to the average value of 

the channel's output. The peaks in the frequency representation using this second 

version were sharper than those obtained using the first version. 

In the second version of the coincidence formula the area of an event was 

used (as opposed to using the amplitude of an event). If the amplitude of an 

event were used, then two different frequency channels with the same amplitude 

but different event rates would have different values of the average coincidence 

function at zero delay. The frequency channel with a higher event rate would have 

a larger value of the coincidence function at. zero delay. By using the area of an 

event when 'coinciding' two events, frequency channels with different event rates 

but similar output levels will have similar values in the coincidence function at 

zero delay. 
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It was difficult to locate the pitch period in a frequency channel using the 

first and second formulas. A periodic sound has a peak in the coincidence function 

at the location of the pitch period. Although this peak was present using versions 

one and two, many other peaks in the coincidence function were nearly as large. 

After a careful study of the problem, it was determined that the output of a 

cochlear filter, which was amplitude modulated, would not form a sharp peak 

in the coincidence function at the pitch period. Neither of these two versions 

preserved the modulation depth present in the original cochlear output. Thus, a 

small amount of amplitude modulation present in the cochlear output would not 

be preserved in the shape of the coincidence function. A requirement that the 

modulation present in the cochleagram be preserved in the coincidence function 

(along with the requirement that the value of the coincidence function at zero be 

proportional to the amplitude of the cochlear output) led to the development of 

the third coincidence formula. The first term in this formula lets stronger events 

influence the coincidence function more than weaker events, and the second term 

emphasizes the differences in the amplitudes of the two events. 

After some use with version three, it seemed there was no reason the ampli­

tude modulation depth needed to be faithfully preserved in the coincidence func­

tion. In other words, the modulation depth present at the output of the cochlear 

filterbank could be increased so that the average coincidence function contained a 

greater modulation depth than the original cochlear waveform. Version four (the 

current formula used) enhances the modulation present in the cochlear output to 

form a sharper peak in the coincidence function. 

When deciding how much modulation depth to use in the coi~cidence func­

tion relative to the modulation depth of the original frequency channel output, a 

tradeoff occurs between (1) emphasizing the amplitude variations in the events, 

and (2) maintaining the ability to compute the pitch period of a periodic signal. If 

amplitude changes are emphasized too much, then slight variations in the periodic 

signal over successive pitch periods will yield very low values for the channel's 

coincidence function except at zero delay. If amplitude changes are not empha­

sized enough, the system will not be able to differentiate between the peak in the 
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coincidence furtction at the pitch period and the peak at some other location. No 

quantitative testing was performed to determine how much enhancement of differ­

ences in the area of events is optimal to the performance of the pitch computation. 

While there is some qualitative evidence on the relationship between a sig­

nal's modulation depth and the perceived modulation depth [Mathes and Miller 

1947], there is no quantitative evidence on this relationship. More detailed in­

formation is needed to determine how the auditory system uses the amplitude 

modulation output of each frequency channel to compute periodicity i~ormation. 

There are two advantages for using coincidence formula 4 over using an au- . 

to correlation function to compute periodicity information of a frequency channel's 

output. These advantages are: 

1. Coincidence(eventa , eventa ) ~ Coincidence(event a , eventb) 'Vevent a , eventb 

The importance of this requirement can be seen in segments where the am­

plitude of a steady-state periodic segment is decreasing, (i.e., where each 

repetition of a periodic waveform is successively lower in amplitude). The 

autocorrelation function of this signal when the overall amplitude is very 

small will show larger peaks at multiples of the pitch period than at the 

pitch period, while the value of the average coincidence function at the pitch 

period will always be larger than the value at multiples of the pitch period. 

(See appendix one for details.) 

2. The coincidence function enhances the modulation depth, the autocorrela­

tion function decreases it. Thus, if an incoming waveform has a certain 

modulation depth, the autocorrelation function of this signal will have a 

lower modulation depth to its shape, but the coinciden,ce function will have 

a greater modulation depth. (See appendix one for details.) By increasing 

modulation depth in the coincidence function, it is possible to determine 

the pitch period in each frequency channel from the amplitude modulated 

cochlear output. 

The foregoing discussion makes it apparent that the amplitude modulation 
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present in the cochlear m.odel's output is very useful for determining the pitch 

period of the incoming sound signal. This amplitude modulation is a result of the 

finite bandwidth of each filterbank channel, since the output of each frequency 

channel is influenced by the adjacent lower-frequency harmonics that are not to­

tally suppressed in the filtering. Thus the sharp high frequency cutoff and the 

slower low frequency rolloff in the cochlear transfer function result in an ampli­

tude modulated output waveform, and this amplitude modulation in each fre­

quency channel is encoded by the computer model and used for the determination 

of the pitch of a periodic sound. 

Another tradeoff present is the choice of the time constant used in the de­

cay of the recent event's coincidence function (current value is 15 msec). A small 

time constant allows the average coincidence function of all events to follow rapid 

changes in a periodic signal, but results in pitch-synchronous activity in the av­

eraged output: sampling the output every 10 msec (100 Hz frame rate) will alias 

the pitch synchronous information, causing 'beating', if the time constant is too 

short. A longer time constant will result in smoother transitions between succes­

sive coincidence functions (every 10 msec), but will make it more difficult to follow 

rapid changes in the pitch of a periodic signal. 

3.4 Examples of the Coincidence Function 

At this point, it should be helpful to present several examples of the coinci­

dence representation of different types of sounds. Figure 3.5 shows the coincidence 

function when the input is a synthetic periodic sound (all the harmonics of a 100 

Hz fundamental). The first vertical stripe (away from the x origin) is the location 

of the pitch period. Since the output of each frequency region of the cochlear 

model will have the same pitch period, each frequency region in the coincidence 

function has a peak at the same location. 

Figure 3.6 shows the coincidence function of another periodic sound. This 

sound is very similar to the sound in figure 3.5, except that the first seven harmon­

ics are missing. The cochlear output of the low frequency channels is very weak 
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Figure 3.5: The coincidence function of a synthetic periodic sound. All the har­
morucs of 100 Hz fundamental are present with an amplitude that rolls off as 
1/F . 

and as a result, the coincidence picture in these frequency regions looks blank. All 

the frequency channels with center frequencies above the location of the eight har­

monic have a peak at the pitch period. The pitch period can be easily determined 

from this representation as the location of the first vertical stripe (away from the 

x origin). 

The coincidence function of white noise is shown in figure 3.7. Since the out­

put of each frequency channel will be bandlimited noise, the coincidence function 

dies away as the coincidence delay increases (since the correlation between the 

channel's output will decrease as the time between the two points increases). No­

tice the lack of any structure, or vertical stripes (like the periodic sound sources). 

The coincidence function of periodic speech is shown in figure 3.B. Each 

horizontal stripe in this picture represents a concentration of spectral energy. Some 

harmonics do not show ~p in the picture (such as the second harmonic) since the 

amplitude of this harmonic is low. Each frequency region with strong enough 

energy shows a peak in the coincidence delay at multiples of the pitch period. 
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Figure 3.6: The coincidence function of harmonics 8 through 79 of the same peri­
odic sound in figure 3.5 
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Figure 3.7: The coincidence function of white noise 
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The last example of the coincidence function is shown in figure 3.9. The 

input signal is the sum of two sine waves of 100 and 110 Hz. The 110 Hz sme 
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Figure 3.8: The coincidence function of the vowel /1/ in the digit /si:x./ 

wave has twice the amplitude of the 100 Hz sine wave. The waveform can be 

viewed as the sum of a 110 Hz sine wave with an amplitude modulated (10 Hz) 

sine wave of 105 Hz. When the 105 Hz amplitude modulated sine wave reaches 

it's amplitude envelope minimum, the 110 Hz sine wave can be clearly seen. The 

middle and bottom pictures are the coincidence function of a single frequency 

channel shown over time. As the incoming signal's frequency varies between 110 

Hz and some intermediate value (between 105 and 110 Hz), the peak in the this 

frequency channel's coincidence function will also vary. 

This example shows the reason for the development of the smoothing algo­

rithms used (described in section 3.6.1 and 3.6.3). The peak in the coincidence 

function for two steady state periodic sounds will lie between the pitch periods of 

the two individual periodic sounds. Each row of the coincidence function is then 

convolved with a smoothing waveform. If the peak is exactly between the two 

individual pitch periods, then smoothing the coincidence function will result in 

an equal amplitude at each of the individual pitch periods. The incoming energy . 

can then be split evenly between the two sound sources. If the coincidence peak 

is closer to one pitch period than to the other, then the value after the smoothing 
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operation can be used to assign more of the energy to this sound source than to 

the other sound source. The smoothing function used in the separation system 

(described in section 3.6.1, also see figure 3.12) varies with the frequency chan­

nel being smoothed; the total width of the 'smoothing function is rougly equal to 

the period of a sine wave with a frequency equal to' the center frequency of this 

channel, 

3.5 The First Separation System 

The algorithms for separating sounds presented in this thesis have been 

modified many times, The previous section discussed several different versions of 

the coincidence function which were developed and modified for different reasons. 

The computer model for separating sounds has also undergone many different 

changes over time. Two different implementations of the theory of sound sepa­

ration (presented in chapter two) have been developed. This section will briefly 

review' the first computational model for separating sounds. This model is no 

longer in use and has been replaced by a newer version of sound separation algo­

rithms. It is described briefly in this section to explain the difficulties that were 

encountered in implementing the auditory theory. After the limitations and prob­

lems with this initial system have been reviewed, the current computational model 

of auditory sound separation will be presented. 

The goal of the first model was to separate two periodic sounds in a way 

similar to the human auditory system. The acoustic cues used to separate the two 

periodic sounds are pitch, pitch dynamics, and onset information. These infor­

mation cues were computed from the average coincidence representation frames 

(computed every 10 msec). 

Since the computation of the average coincidence function for periodic in­

formation is local in both time and frequency, two possible outcomes arise: (1) if 

at some time sou.nd number one was much stronger than sound number two in one 

frequency region, then the coincidence function would reflect the properties of the 

stronger periodic sound; (2) if sound two was much stronger than sound one in a 

different frequency region, then that frequency region would reflect the features 
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Figure 3.9: Top: Sum of two sine waves (F=lOO, 119 Hz) of tulequal amplitude 
(the 110 Hz sine wave is twice as large as the 100 Hz sine wave). . 
Bottom: The coincidence ftulction of a single frequency channel over time. Each 
column of this picture is the coincidence ftulction of that frequency channel at a 
different time. This channel's coincidence function is time aligned with the original 
waveform (above). 

of the second sound source. Even though two sotulds may have the same overall 

energy, the two sounds can have the energy concentrated in different frequency 

locations. The coincidence function in each frequency channel would respond to 

the sum of the two signals, but if one sound was much stronger than the other 

sotuld in that frequency region, the properties of the coincidence representation 

would reflect only the information from the stronger soUnd source. 
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A key approximation in this first system was that 'each channel of the coinci­

dence function will reflect the information of either one sound source or the other'. 

Since the computations are local in both frequency and time, two sounds that had 

the same energy could be easily separated if they had different distributions in the 

frequency-time plane, such that locally one sound was stronger than the other. 

Using this approximation, the system then focused on determining which sound. 

source the periodic information in a given frequency channel represented. When 

it determined that there were two periodic sounds present, it decided whether the 

periodic information present in this frequency channel was consistent with the first 

pitch period or the second pitch period. 

The neural events in each frequency channel at each point in time were 

assigned to the different group objects present, based on the consistency of the 

frequency channel's features (pitch, pitch dynamics and onset) and those of the 

. group object. There were two types of group objects in this first system. There 

were periodic group objects and burst group objects. The periodic group objects 

represented steady state periodic sound segments and the burst group objects 

represented the events at the onset of a periodic segment. The burst groups were 

necessary because the events at the onset of a periodic sound have nothing in the 

past to autocorrelate with (and have a very low periodicity value). There were 

plans to add a nonperiodic group object to the system (to represent the nonperiodic 

speech segments), but this was never implemented. 

The system first computed the coincidence representation of the incoming 

sound. Next, it computed the different information cues (local to each frequency­

time region) so that the events could be assigned to the different group objects. 

The average coincidence function of all recent events in each frequency channel 

were computed every 10 msec. Since the value of the average coincidence func­

tion at the pitch period was sometimes split between two neighboring bins, the 

amplitude of the coincidence function did not accurately reflect the true degree of 

periodicity at the pitch location. Therefore, before computing the different local 

features for sound separation, the coincidence function in each frequency channel 

was smoothed by convolving it with a gaussian envelope. A gaussian curve for a 
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smoothing function is just one of the many possible shapes; the standard deviation 

was equal to 2 samples at a sampling rate of 16 khz. This smoothing operation 

was added to remove the effect of bin splitting, and to have the amplitude of the 

coincidence function at the pitch period 'reflect the periodicity of the signal at that 

location. The resulting representation was called the smoothed coincidence func­

tion. The height of the resulting smoothed coincidence function was then used to 

locate the pitch period. 

For each frequency channel, independent features were computed from this 

smoothed coincidence function (such as the pitch period of the s01l1ld in that 

frequency region). Since it was not possible to determine the pitch period in 

each frequency channel with 100% accuracy, a list of the possible pitch periods 

in each frequency channel was computed. A pitch strength was computed for 

each possible pitch period in each frequency channel. Possible pitch periods were 

chosen using the following algorithm: all local peaks in the smoothed coincidence 

function, having an amplitude greater than. 7 (an arbitrary number that worked 

well) multiplied by the maximum value of the coincidence function in the allowable 

pitch interval, were chosen as possible pitch periods. Using this formula, it was rare 

for the actual pitch period not to be included among the possible pitch periods, 

although a channel sometimes contained many false possible pitch periods. 

In addition to computing the pitch period of each frequency channel every 10 

msec, the pitch dynamics and the percent amplitude change were also computed. 

The percent amplitude change was computed to determine if an onset of a sound 

had occurred; the pitch dynamics were computed to aid in the separation of the 

two periodic sounds. 

The next stage in the separation processing was the assignment of events 

to different group objects. A summary of how the events were assigned to the 

different group objects is listed below: 

1. For each of the group objects that already existed, the system determined 

how well this group object accounted for the information present in the 

coincidence representation. When different features of a frequency channel 

were close to the features of the group object (Le., when the weighted distance 
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between the feature vectors was less than a threshold), the group object 

was said to be compatible with the information present in that frequency 

channel. A group object could be compatible with some frequency channels 

by random chance, even though the'sound that the group object represented 

might have already stopped. Therefore, a minimum number of frequency 

channels had to be explained by any pre-existing group object before any 

of the channels could be assigned to that group object. The determination 

whether there were enough frequency channels in the current time frame 

which were consistent with each group object was made by checking that the 

number of frequency channels (which were compatible with a group object) 

was greater than a set threshold. If the system determined that there were 

enough frequency channels, the individual frequency channel objects (all the 

events in the past 10 msec window in that frequency channel) were assigned 

to the group object with a 'link' of a certain strength (based on how close 

the features of the frequency channel and the group object were). 

2. After the events in some frequency channels were linked to the existing group 

objects, the system determined whether there were any frequency channels 

that were 'unexplained' by any of the current group objects (frequency chan­

nels with no links to any group object or very weak links). If there were a 

large number of frequency channels that remaine~ unexplained, the system 

tried to create a new group object that explained the remaining frequency 

channels. All frequency channels not well explained by any existing group 

object (links to current group objects less than some threshold) were col­

lected. If there were enough frequency channels that were unexplained by 

any existing group object, and if there is a new group object which can ex­

plain this data to a certain level (explain more than 70% of the remaining 

frequency channels), then a new group object was created and the appropri­

ate frequency channels were linked to this new group object. 

There were several problems with this first separation system. The main 

difficulties that were encountered with this model are summarized below: 
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1. The system required that the information features of the group object at the 

previous time frame (pitch period, pitch dynamics, increase in amplitude) be 

close to the features of the different frequency channels in the current time 

frame (10 msec later) for the frequency channel to be assigned· to the group 

object. Sometimes, the pitch of a talker' would change from one time frame 

to the next by an amount greater than the pitch continuity threshold used. 

This would result in none of the frequency. channels being assigned to the 

appropriate group object, and a new group object would then be created. 

These two group objects would have similar pitch period features and would, 

then compete with each other to explain the different frequency channels 

even though both group objects belonged to the same sound source. 

2. Sometimes there were channels not explained by any group object, but the 

channels were not numerous enough to justify creating a new group object. 

Therefore weak sounds sometimes went undetected because of the lack of 

sufficient information. By lowering the threshold used to create a new group 

object, one could decrease the number of times that frequency channels went 

unexplained. This lowered threshold would result in the creation of false 

group objects, which did not correspond to any sound source present. The 

threshold in this system was set at a high level so that false group objects 

would never be created. This disadvantage was somewhat offset by the 

backtracking algorithm used. That is, if a new group object was created at 

some time, a search was undertaken for frequency channels in previous time 

frames that could be assigned to this new group object. 

An example of the separated output from this system is shown in figure 3.10 

and 3.11. There are two synthetic vowels present with different :pitch periods, dif­

ferent onset and offset times, and formants in different frequency regions. Shortly 

after one vowel has begun, a second synthetic vowel is started. The system de­

termines both how many sounds are present and which frequency channels were 

created by which sound sources. 

By looking at the cochlear model's output of the higher frequency channels, 

91 



Cochleagram 

Time ... 

Coincidence Delay ... 

Figure 3.10: Top: The original cochlear representation of the two synthetic vowels. 
Each vowel has its three formants in di.fferent frequency regions. Bottom: The 
coincidence representation when both synthetic vowels are simultaneously present. 

one can see that each pitch pulse from the different sound sources was separately 

resolved in time. The output of the separation program assigned all the events 

in each frequency channel in a 10 msec interval either to one group object or to 

92 



( 
I 

C c 

. ~ ... .,.: , .. 
k.. • ••• • ~ •• ~ ••• , • • . .,'. ~ -..... 
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Figure 3.11: Top: The same coincidence flll1ction shown in figure 3.10. Middle: 
Those frequency channels with one pitch period were assigned to the first group 
object. Bottom: Those frequency channels with the second pitch period were 
assigned to the second group object. 

the oth~r group object. Based on these results, the method used to assign events 

to group objects in the first system was then modified. Instead of assigning all 

the events in a frequency channel in a 10 msec time interval to one group object 

or another, independent link strengths between each event (in each frequency 

channel) and the different group objects were computed. 

There are several difficulties with the algorithms used by this first compu­

tational model of sound separation. The separation program contained many dif­

ferent thresholds for making the decisions that were necessary to separate sounds. 
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All decisions made by the system used local information, and independent deci­

sions were made every 10 msec. The system assumed that the features computed 

in each frequency channel (pitch, pitch dynamics, increase in amplitude) reflected 

the features of either one sOWld source or the other sOWld source (they were not 

some intermediate feature vector). The decision when to start and stop group 

objects was based on satisfying arbitrary criteria, as was necessarily the case with 

many of the decisions made by this first computational model. 

In an attempt to solve these problems, a second computer model of the 

auditory sOWld separation process was developed. The next section describes this 

model. 

3.6 Current System Overview 

Since many decisions must be made by a separation system, a decision 

framework for separating sounds was needed. The second, and current computer 

model attempts to solve the difficulties encoWltered with the first separation sys­

tem. The difficulties with this second computational model of sOWld separation 

are described in chapter four where the performance of this system in separating 

two simultaneous talkers is reviewed. 

The goal of the current computer model is to separate the simultaneous 

speech of a male and female talker. The author selected two male and two female 

talkers from a database of speakers used for a speaker-independent continuous­

digit recognition system being developed in the same laboratory [Kopec and Bush 

1985]. For these four talkers, the author constructed a database of handmarked 

speech digit strings. This database was used to train and test the separation 

performance of the computer model. The output of this separation system was 

then used as input to the Kopec-Bush speech recognition system. 

The database consists of 39 single-speaker digit strings (of seven continuous 

digits) spoken by two males and two females. It also consists of 38 examples of 

dual-speaker digit strings (obtained by adding the single-speaker waveforms of a 

male and a female speaking different digit strings). The database was limited 

to this size for computational reasons (eg, limits on disk storage, computer time 
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necessary to process the data). 

The current separation system, then, consists of the following foUI stages: 

1. An iterative dynamic programming pitch tracking algorithm determines the' 

pitch period for each of two sound sources. If one or both sounds are not 

periodic, the corresponding pitch period has no meaning. 

2. A Markov model represents the number of sounds present (Le., one or two) 

and the type of each sound SOUIce (Le., periodic or nonperiodic). By finding 

the probabilities of the states of the Markov model given the input, the 

Viterbi algorithm is used to determine when group objects start and stop, 

how many group objects are present, and which group objects belong to 

which sound streams. 

3. An algorithm estimates the amplitude (in each frequency channel) of each 

sound source present, given information on the number of sounds and the 

type of each sound SOUIce. Both periodic information and spectral continuity 

constraints are used in an iterative algorithm to compute an estimate of each 

sound SOUIce. One constraint, however has been dropped: the approximation 

that the featUIes in a frequency channel reflect one sound source or the other. 

4. An algorithm resynthesizes a waveform from the separated output. In order 

to interface with the recognition system (at the current time), a waveform 

of the separated output is computed. This waveform also allows people to 

listen to the separated results. 

The next sections will describe in detail how each of the different algorithms 

works. 

3.6.1 Fundamental Frequency Computation for Two Speak­
ers 

When a person is speaking, some of the speech segments can be classified 

as being 'periodic'; others segments can be classified as 'nonperiodic' (although 
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from both sounds would be multiples of the resulting fundamental frequency. 

To compensate for these false peaks in the average coincidence function (at 

a multiple of both pitch periods), a scaling factor is applied to emphasize peaks 

in this representation with a smaller value of the pitch period. This scaling factor 

is a linear weighting which varies from a value of 1.0 at zero delay to a value of 

.1 at the end of the coincidence delay line. The peaks at the actual pitch periods 

are emphasized over peaks at multiples of the pitch periods. 

A dynamic programming algorithm computes a pitch track instead of making 

independent decisions for the pitch values every 10 msec. Two options exist for 

computing a dynamic programming pitch track for two periodic sounds. These 

two options are compared below. 

• A dynamic programming algorithm traces the pair of pitch periods (P1,P2) 

through time. Since each pitch period could vary over a range of 384 samples 

(the length of the delay line)' there are 147456 different values for the two 

pitch periods (P1,P2). A dynamic programming score for each of the 147456 

pitch period pairs would have to be computed every 10 msec. Since such 

extensive computation is not feasible, a beam search would be necessary to 

reduce the computation load, but such a search might result in the deletion 

of the actual pitch period pair. 

• An iterative dynamic programming algorithm first traces the dominant 

pitch period (the pitch period with a stronger peak in the average coincidence 

function) through time, and then traces the weaker pitch period through 

time. This algorithm is computationally more feasible, since at each of the 

two iterations, only 384 possible pitch values need to be considered. The 

disadvantage of this approach is that if it makes an error while computing 

the first pitch period, this error might also cause an error in the location of 

the second pitch period. 

Due to the computational considerations mentioned, "the iterative dynamic 

programming algorithm was chosen as the algorithm for computing the pitch pe-
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riod. Different dynamic programming algorithms are used to compute the domi­

nant pitch track and the weaker pitch track. 

A dynamic programming algorithm computes a pitch score for every possible 

dominant pitch period (p = 0 to 383 samples) every 10 msec. It is desired that the 

location of the maximum in the dominant pitch score is equal to the pitch period 

of one of the two sound sources. The dominant pitch score 

( ) 
de! 

DynProgScorel P, T = 
PitchScore1(P, T)+ 

383 { DynProgScore1(p, T - 1)+ } 
maxp=O Tran.sScore1(P - p, T) 

(3.1) 

is equal to the sum of the score from the periodicity information at the current time 

frame, and the score from transitional information (which is based on the dominant 

pitch score at the previous time). The pitch score is computed as follows: 

PitchScore1(P, T) ~! ModAvgCoin(P, T) 

{ 

AC(P, T)* 
ModAvgCoin(P, T) ~ 0 LinWt(P) 

AC(P, T) > AC(P - 1, T) 
if and 

AC(P, T) > AC(P + 1, T) 
otherwise 

(3.2) 

(3.3) 

The average coincidence function [ AC(P,T) is shown in the bottom picture 

of figure 3.14 J is equal to the average of all the rows of the smoothed, normalized, 

minus-random coincidence representation in figure 3.13 (bottom right picture). 

The modified average coincidence function [ ModAvgCoin(P,T) J is zero every­

where except at the local maximums of the average coincidence function. This 

restriction forces the dominant pitch track to pass through a local maximum in 

the average coincidence representation. The average coincidence function is scaled 

by the linear weighting function previously described (varies from 1.0 at P=o to 

.1 at P=383), to prevent multiples of the pitch period from being chosen as the 

actual pitch period. 
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The transition score is a function of the pitch change (from the previous 

time frame to the current time frame), and is largest when the pitch transition is 

smallest 0 

Tran8Scorel(deltaP, T) <!!,f exp(-·loaba(deltaP)) * ci~ModAvgCoin(p, T) (304) 
p=O 

The first term in equation 304 varies from 100 (when the change in the pitch period 

is equal to 0) to 000 (when the pitch period change is very large)o The second term 

scales the transition score by the maximum of the modified average coincidence 

function (equation 303)0 Since the pitch score varies depending on the height of the 

average coincidence function, the transition score is scaled to balance the relative 

importance of the pitch score and the transition scoreo This transition score favors 

the pitch period over multiples of the pitch periodo When the pitch of a periodic 

sound changes by n samples, twice the pitch period will change by 2n samples, 

and will therefore have a lower transition score than the actual pitch periodo 

The value of the pitch period P which maximizes the dynamic programming 

score at a time T is computedo The algorithm then backtracks 25 frames (250 

msec), tracing the previous pitch period p which gave rise to this maximum in the 

dynamic programming back in timeo The resulting pitch period (250 msec before 

the current time) is the dominant pitch period at that previous time frameo 

Once a decision has been made about the value of the dominant pitch period 

at every point in time, these pitch periods are then assigned to the sound stream 

which is believed to have generated themo Each of two sound streams contain 

the average pitch value of the speakers that are being separatedo The dominant 

pitch value is assigned to the sound stream with the closer average pitch period 

(provided that the dominant pitch value is within 60% of the average pitch value 

of that sound stream)o The dominant pitch period will oscillate between the two 

sound streams, depending on which periodic segment is louder at the timeo 

Since the system attempts to separate a male and a female speaker (whose 

average pitch values are different), the system can assign the pitch to the sound 

stream based upon which speaker has the closest average pitch periodo This algo-

102 



r 

rithm would not be feasible when attempting to separate two speakers with the 

same average pitch. 

A second dynamic programming algorithm (equation 3.5) is then used to fill 

in the missing pitch periods in each sound stream. The best pitch track between 

the known pitch endpoints (when the dominant pitch period switches from this 

sound stream to the other sound stream and then back again) is then computed. 

The dynamic programming score for the weaker pitch period 

DynProgScore2(P, T) ~! 
PitchScore2(P, T)+ 

383 { DynProgScore2{p, T - 1)+ } 
maxp=o TransScore2(P - p, T) 

(3.5) 

is also equal to the sum of a pitch score and a transition score. The pitch score 

for the weaker pitch period is computed as follows: 

P
. h () de! 2:/requencll max{O, MCoin(f, P, T) - MCoin(f, DomPit1{T), Tn 
'ttc Score2 P, T = 

N umFreqC hannel8 
(3.6) 

MCoin is the coincidence representation after it .has been smoothed, normalized, 

and had the coincidence function of white noise subtracted from it (bottom right 

picture in figure 3.13). If the average spectrum of the weaker periodic sound is 

larger than the average spectrum of the dominant periodic sound in some frequency 

regions, one would expect the value of the modified coincidence representation (in 

these frequency regions) at the location of the weaker pitch period to be larger than 

the value at the dominant pitch period. In each frequency channel, the difference 

in the value of the modified coincidence function at possible pitch period P with 

the value of the modified coincidence function at the dominant pitch period is used 

to indicate that P is a possible location of the weaker pitch period. 

The transition score for the weaker pitch period 

de! abs{ deltaP) 2 
Tran8Score2{deltaP, T) = -.1 * ( ) 

10 
(3.7) 

has a heavy penalty for large pitch variations. The transition score is not scaled in 

amplitude (like the transition score in equation 3.4), so that when the pitch score 
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is very small (due to the weaker periodic sound being masked)' the transition score 

will increase in importance (to increase contextual information). 

The weaker pitch track is constrained to start and stop at known pitch 

endpoints (obtained when the dominant pitch period is assigned to this sound 

stream). This second dynamic programming algorithm fills in the values of the 

pitch track of each sound source when the dominant pitch value was not assigned 

to this sound stream. 

The result of this iterative dynamic programming algorithm is a pitch period 

value at every time frame (every 10 msec) for each of two sound streams. The 

dominant pitch period is computed .first, and is then assigned to the sound stream 

with the closest average pitch period. A second dynamic programming algorithm 

is used to fill in the missing pitch values of each sound stream, (i.e., when the 

dominant pitch period is not assigned to this sound stream). 

The value of a pitch period in each time frame does not mean that there are 

two steady-state periodic sounds present. These pitch values will be used in the 

next stage to determine whether there is one sound present or two sounds present. 

These values are also used to determine whether each sound source is periodic or 

nonperiodic. 

3.6.2 Hypothesis Determination 

The speech database of 40 single-speaker digit strings (of seven continuous 

digits) was handlabeled based on a finite state model. Every 10 msec, a label was 

assigned to that segment of the speech database. The finite state model currently 

consists of seven states: silence, periodic, nonperiodic, onset, offset, increasing­

periodicity, decreasing-periodicity. Three of the states are 'steady states', while 

the other four states are 'transitional states'. A speech sound can remain in a 

steady-state sound from one time frame to the next, but it can only remain in a 

transitional-state for 10 msec, after which it must transition to one of the steady 

states. A state transition diagram along with the transitional probabilities between 

states (computed from the database) is shown in figure 3.15. 

The model for two sound sources consists of a separated state transition 
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State Transition NetWork for 1 Sound 

.'1 

Figure 3.15: State transition network for a model of one sound source. 

network for each sound stream. The only constraint imposed on the two-sound 

model is that only one sound can make a transition to or from a transitional state 

(onset, offset, increasing-periodicity, decreasing-periodicity) at a time. One sound 

source model must remain in the same state while the other sound source model 

transitions between the different steady states. The resulting model consists of 33 

states and 69 state transitions. 

Instead of making independent decisions at each point in time, the state 

transitions constraints of the Markov model are used to maintain decision conti­

nuity across time. The Viterbi algorithm is used to decide both how many sound 

sources are present, and what the characteristics of each sound source are (peri- . 

odic, nonperiodic, ... ). The system could decide that only one sound source was 
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present by labeling one of the sotllld streams as silence. 

At every time frame, the hypothesis cost of every possible state 

H C t(St t T) 
def . { HypCost(Statej, T - 1)+ } 

yp os a ei, = mIn . ( ) allowable tran8ition8 TransCost Statej -+ Statei 
(3.8) 

is computed. The hypothesis cost of each of the 33 sta~es is computed from the 

hypothesis cost of the previous state at the previous time and the cost of the 

transition (from the previous state to the current state). The transition cost 

T C t(St t S ) 
def TransDataCost(Statej -+ Statei)+ 

rans os a e· --+ tatei = . . 
1 TransAPrwT'tCost(Statej -+ Statei) 

(3.9) 

consists of two components: a cost which depends on the data and a cost which 

depends on the a priori state transition probabilities. The a priori state transition 

cost 

TransAPrioriCost(Statej -+ State;) ~ 
(3.10) 

- log Probability( Statej -+ Statei I Statej) 

is computed from the state transition probabilities computed from the handmarked 

database. The data transition cost 

TransDataCost(Statej -+ Statei) ~f 

{ 

PeriodicityCost(j, Statej -+ State;) + } 
Avgfreq Amplit'UdeCost(f, Statej -t Stated+ . 

AmpChngCost(j, Statej -+ Stated 

(3.11) 

is the average data cost across all the different frequency channels. The data 

cost in each frequency charmel for" a state transition consists of three components: 

a periodicity cost, an amplitude cost, and an amplitude change cost. The local 

periodicity cost 
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PeriodicityCost(f, Statej ~ Stated ~f 
(3.12) 

- log Probability(f, Periodicity Data I Statej ~ Stated 

is computed from the probability of observing the periodicity information for each 

of the state transitions. Different periodicity information is used depending on the 

state transition we are considering. 

Probability(f, Periodicity Data I Statej ~ Stated ~ 

Prob(MCoin(f,1> = Pitch l )) if one sound present 

Prob(MCoin(f,1> = Pitch l )) 
if sound one is periodic, sec­
ond sound is nonperiodic 

Prob(max(MCoin(f, Pd, MCoin(f, P2 ))) if both sounds are periodic 
. (3.13) 

Each of the probabilities in equation 3.13 is obtained by histogramming the 

periodicity information for each state transition. When the state being consid­

ered is only one person speaking (the other speaker's model remains in the silent 

state), the probability of observing this value of the modified coincidence func­

tion at that person's pitch period is computed. When the state being considered 

is two simultaneous periodic sounds, the probability of observing the maximum 

of the modified coincidence function is computed. The probability histograms of 

these values were computed for each state transition. The pitch periods used in 

computing these probability histograms were the pitch tracks that were computed 

on each of the isolated sounds. The probability of the amplitude and amplitude 

change data 

Probability(f, Amplitude Data I Statej ~ State;) ~f 
(3.14) 

Probability(Coin(J, cP = 0) I Statej ~ Statei) 
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Probability(f, Amplitude Change Data I Statej ~ Stated ~ 
(3.15) 

P b b 'l't (Coin(/,.p=O,T)-Coin(j,.p=O,T-l) I St t St t ) 
ro a tty Coin(j,.p=O,T)+Coin(j,.p-O,T-l) a ej ~ a ej 

are computed from probability histograms for each of the different possible state 

transitions. 

At the end of the incoming sound signal, the best path is determined by 

backtracking from the state with the minimum cost at the last time frame. The 

resulting state path determines when periodic and nonperiodic group objects start 

and stop, and which sound stream they belong to. 

rr two simultaneous sounds are present at one time, the Markov model im­

plicitly assigns each of the different group objects to different sound streams. The 

only way that a nonperiodic segment could always be correctly assigned to a sound 

- stream is if this segment overlapped in time with a periodic segment from the other 

speaker. 

3.6.3 Spectral Amplitude Estimation 

The previous two sections have described the way the system determines 

both the number of sounds present and the characteristics of each sound source . 

. The next step is the estimation of each sound source's spectral amplitude, given 

that we know the types of sounds present. 

When the system has determined that there are no sounds present (both 

speakers are silent), the spectral amplitude estimate of each sound source is O. 

When it has determined that there is only one sound present (one sound source 

is silent, while the other sound is in one of the other six possible states), then 

the spectral amplitude estimate for this sound source is equal to the observed 

spectrum (the other spectral amplitude is set to 0). When there are two sounds 

present, the system uses the algorithms described later in this section to compute 

an estimate of the spectral amplitude of each of the two sounds present. 

The difficulties in estimating the spectrum of each sound source (when there 

are two sound sources present) are listed below: 
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• When there are two periodic sounds and some harmonic components are 

approximately integer multiples of both fundamental frequencies, it is im­

possible to determine an amplitude estimate at these frequencies for each 

sound source only using information at the current time. When the pitch 

periods vary over time, estimates at neighboring time slices can help to re­

solve the uncertainty in the estimates of these harmonic components. 

• Since the periodic signal typically undergoes ch!illges from one pitch period 

to the next pitch period, it can be viewed as consisting of two components: a 

part that repeats exactly from one pitch period to the next r and a part that 

has changed from the previous pitch period. When one sound is periodic 

and the other sound is nonperiodic, there is a difficulty in estimating the 

spectral amplitude, since it is impossible to determine what part of the sum 

signal's observed nonperioidicty is due to the nonperiodic sound source, and 

what is due to the periodic sound source. 

• Since the frequency responses of neighboring frequency channels overlap, 

independent estimates of the spectral amplitude in each frequency channel 

may produce a spectral estimate which is not physically realizable. There 

are constraints on both what spectral amplitudes are possible to synthesize 

and what spectral amplitudes are likely to be produced by the human voice. 

One would ideally like to generate the maximum likelihood spectral estimate 

for each sound source given the periodicity information present and the spectral 

continuity requirements of speech sounds. However, a joint estimation of the 

spectral amplitude of each sound source over a frequency time region is not feasible, 

since it would require the joint estimation of thousands of variables. The spectral 

estimation algorithms that are described in this section use a two step approach 

listed below. 

1. Compute an initial spectral estimate of each sound source using only local 

periodicity information. 
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2. Iteratiyely compute a spectral estimate for each sound source which locally 

minimizes a cost function (maximizing the probability of each local spectral 

estimate). At each iteration, the cost of a local spectral estimate is com­

puted based on both the observed periodicity information and the current 

spectral estimates of the neighboring frequency-time regions. The spectral 

estimate with the lowest cost is used as the current spectral estimate for this 

frequency-time region at this iteration level. 

The spectral amplitude estimation algorithm first computes the ratio of the 

spectral amplitude of the two sound sources, and then the estimate of each sound 

source is computed from this estimate of the spectral amplitude ratio. Since the 

initial stage of the cochlear filterbank is a linear process (before compression and 

half wave rectification), the filterbank output of the sum of the two sounds is 

equivalent to the sum of the filterbank outputs of the isolated sounds. The sum 

of the two filterbank outputs might produce an output which is smaller than the 

original filterbank output depending on the phase relations between the filterbank 

output of the two sound sources. The expected value of the average filterbank 

output 

(3.16) 

can be approximated by the expected value of the sum of two narrowband filter 

filters with a random phase between them. This formula is then used to estimate 

the actual spectral amplitudes of each sound source, given: 1. an estimate of the 

ratio of spectral amplitudes between the two sound sources, and 2. the observed 

spectral amplitude of the sum of the two sounds. These equations are listed below. 

-- _ AS [ 1 ( R ) 2 15 ( R .) 4 ] A2 - ~ 1 - 4" I+R2 - 64 HR2 - ... 

(3.17) 
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The initial computation of the amplitude ratio R is obtained using the pe~ 

riodicity information in the current frequency-time region. The way that this 

estimate of the amplitude ratio is computed for two periodic sounds is described 

below. 

1. Those time frames in the database of 38 dual-speaker digit strings when 

both speakers voices have been labeled as periodic are collected into a new 

database consisting of two simultaneous periodic sounds. Pitch tracks for 

each of the two speakers were computed on the single-speaker digit strings .. 

2. In each frequency channel, a histogram was computed of the values of the AS 

smoothed and normalized coincidence (ASNC) function (see the top right 

picture in figure 3.13) at the pitch periods. Based on this histogram, the 

values of the ASNC at the pitch period was divided into five equally probable 

regions. The value of the ASNC at the pitch period was then transformed 

into a bin value between 1 and 5. 

3. In each frequency channel, the amplitude ratio of the two periodic sound 

sources was computed. The actual amplitude ratio was obtained by com­

puting the ratio of the amplitude values of the isolated periodic sounds. 

4. A histogram of the amplitude ratio of the two periodic sounds was then 

computed. There were 125 (= 5 * 5 * 5) different histograms; a different 

histogram was computed for each possible bin combination (BP1,BP2,BPD). 

BPI is the bin value of the ASNC at the first pitch period (see step 2), BP2 

is the bin value of the ASNC at the second pitch period, BPD is the bin 

value of the ASNC at the difference in pitch periods (abs(P1-P2)). These 

125 histograms contained the distribution of the amplitude ratio based on 

the coincidence information at these three locations. These histograms were 

computed with the data from all the different frequency channels. 

5. The width of the amplitude ratio histograms reflects the uncertainty in the 

amplitude estimate based on the coincidence representation at these three 
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points. For each amplitude ratio histogram, an initial estimate of the am­

plitude ratio of the two sOilllds is computed. 

6. The initial amplitude ratio estimate for separating two periodic sOilllds is 

computed by determining into which of the 125 bins the current frequency­

time region's periodicity information falls. 

A picture of several of the amplitude ratio histograms is shown in figure 

3.16. 

The way that the amplitude ratio estimate is computed for a periodic and a 

nonperiodic sOillld is very similar to the above procedure. Instead ,of having 125 

different bins which averaged the information across all the different frequency 

regions, 5 histograms were computed in each of the 85 different frequency channels. 

The value of the ASNC at the pitch period of the periodic sOillld was used to 

divide the amplitude ratio information into 5 different categories in each frequency 

channel; 

Once the initial amplitude ratio estimates have been computed, an initial 

spectral estimate for each sound source is computed (see equation 3.17). The 

initial spectral estimate of each sOillld source can fluctuate greatly across both 

frequency and time. Each frequency channel's amplitude estimate is based only 

on the local periodicity information in that frequency-time region. 

After the initial spectral estimate is computed, an iterative algorithm for 

using local spectral continuity constraints is used. At each iteration, in each 

frequency channel, at every time frame, the amplitude ratio is varied in 100 steps 

between a and 00. The new es~imate of the amplitude ratio for this frequency-time 

region is then chosen as the amplitude ratio which is the best match between: (1) 

maintaining spectral continuity with neighboring frequency-time regions and (2) a 

highly probable amplitude ratio based on the periodicity information (computed 

from the amplitude ratio histograms). 

The local spectral continuity information is obtained through probability 

distributions of amplitude change for a single sOillld source. For both periodic and 

nonperiodic segments of speech, histograms Were computed for the following two 
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Figure 3.16: Top: Amplitude ratio histogram when the coincidence function is 
large at the first pitch period, small at the second pitch period and small at the 
pitch difference (P1-P2). Most of the time, sound one is larger in amplitude than 
sound two. 
Bottom: Amplitude ratio histogram when the coincidence function is large at the 
the pitch difference (P1-P2), and small at the first and second pitch period. It is 
likely that the events came from sound one or sound two, but it is not clear which 
sound is larger. 

amplitude change quantities (equations 3.18 and 3.19) in each frequency channel. 

The distributions of the change in amplitude obtained for periodic speech segments 

is shown in figure 3.17. 

Coin(!req, 4> = 0, T) - Coin(!req, 4> = 0, T - 1) 

Coin(!req,4> = 0, T) + Coin(!req, 4> = 0, T - 1) 
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Coin(Jreq, <p = 0, T) - Coin(freq - 1, <p = 0, T) 
Coin(Jreq, <p = 0, T) + Coin(freq - 1, <p = 0, T) 

(3.19) 

These histograms (figures 3.16 ~d 3.17) contain the important information 

which is then used to compute an iterative estimate of each sound source. The 

details of the spectral estimation procedure are now described. 

If the Markov model has determined that there is only one sound present, 

the spectral estimate of that sound source is equal to the observed spectrum. This 

spectral estimate remains fixed and does not change over the iterative spectral 

estimation procedure. If the Markov model has determined that there are two 

sounds present, the spectral estimate of each sound source is computed using a 

different estimation procedure depending on the types of sounds present. An initial 

estimate of the amplitude ratio 

R(F T) ~f Al(F, T) 
, A2(F, T) 

(3.20) 

is estimated using only local information. The spectral amplitude estimates are 

obtained from the amplitude ratio using equation 3.17. When there are two peri­

odic sounds present, the initial estimate of the amplitude ratio is determined from 

the amplitude ratio histograms (which histogram is used will depend ~n the value 

of the coincidence representation at PI, P2, and Pd). When there is a periodic 

and a nonperiodic sound present, the initial estimate of the amplitude ratio is 

determined from a different set of amplitude ratio histograms (which histogram to 

use is based on the value of the coincidence representation at the pitch period of 

the periodic sound source). When one of the sound sources is in an onset state, the 

initial estimate is determined from amplitude ratio histograms (which histogram 

to use is based on the value of the amplitude percent change, computed using equa­

tion 3.18). When there are two nonperiodic sounds present, the spe~trum is split 

evenly between the two sound sources. For all of the other possible combinations 

of two sound sources (when one sound source is in the offset, increasing-periodicity, 

or decreasing-periodicity transitional states) the amplitude ratio estimate at that 

time frame is a linear interpolation between the amplitude ratio at neighboring 
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,·'igure 3.17: Top: The probability distribution of the amplitude change from 
equation 3.19 is shown for a single frequency channel. Bottom: The probability 
distribution of the amplitude change from equation. 3.18 is shown for a single 
frequency channel. 

time frames. 

After the computation of an initial spectral estimate for each sound source, 

the system computes an iterative spectral estimate for each sound source. The 

amplitude ratio 

~ 00 

R(F,T,Iter) = arg min [PerCost(R(F,T)) + SpecContCost(R(F,T), Iter)] 
R(F,T)=O 

. (3.21) 

is computed when there are two periodic sound sources present, or when there is a 
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periodic and a nonperlodic sound source present. At each iteration, the amplitude 

ratio R(F, T) is varied between a and 00 in 100 increments for each value of F (all 

frequency channels) and T (every time frame), and the amplitude ratio estimate 

is equal to the value of the amplitude ratio which minimizes equation 3.21. The 

cost at each frequency-time location is the sum of a periodicity cost and a spectral 

continuity cost. The periodicity cost 

PerCost(R(F, T)) ~r -log Probability[R(F, T) I SmoothN ormCoin(F, T, PI, P2)] 

(3.22) 

is based on the probability that one would observe this amplitude ratio given 

the value of the smoothed and normalized coincidence representation at the pitch 

values. The spectral continuity cost 

SpecContCost(F, T, Iter, R) ~f 

!. * 8 

AmpChngCost[possA1(F, T) I A1(F - 1, T, Iter - 1)]+ 
AmpChngCost[possA1(F, T) I A1(F + 1, T, Iter - 1)]+ 

AmpChngCost[possA1(F, T) I A1(F, T - 1, Iter - 1)]+ 
AmpChngCost[possA1(F, T) I Ai(F, T + 1, Iter - 1)]+ 

AmpChngCost[possA2(F, T) I A2(F - 1, T, Iter - 1)]+ 
AmpChngCost[possA2(F, T) I A2(F + 1, T, Iter - 1)]+ 

AmpChngCost[possA2(F, T) I A2(F, T - 1, Iter - 1)]+ 
AmpChngCost[possA2(F, T) I A2(F, T + 1, Iter - 1)] 

(3.23) 

consists of eight terms. There are four amplitude change costs for each sound 

source since each frequency-time channel has four neighbors (the same frequency 

channel at the previous and next time frames, and the two neighboring; frequency 

channels at the same time frame). Each amplitude change cost 

AmpChngCost[possA1(F, T) I A1(F - 1, T, Iter - 1)] ~f 
(3.24) 

_ lo Probabilit [POUA1(F.T) -Al(F -l,T,Her-l)] 
g y ponAl(F.T)+Al(F-1.T.Iter-l) 
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is based on the probability that one w<?uld observe this amplitude change. When 

the amplitude ratio is varied between 0 and 00, the spectral amplitude estimate 

that would result from using this estimate is computed from the sum-splitting 

formula discussed earlier in this section (equation 3.17). 

088A2 - 1 - - - -AS [ 1 ( R )2 15 ( R)4 1 
p - '1'1 + R2 4 1 + R2 64 1 + R2 ... (3.25) 

p088Al = P088A2 * R (3.26) 

This iterative algorithm computes an estimate of the spectral amplitude 

of each sound source using local spectral continuity constraints. It attempts to 

compute the maximum likelihood spectral estimate for each' sound source given 

the periodicity information present and the spectral continuity requirements of 

speech sounds. The iterative algorithm presented is not guaranteed to converge to 

the absolute minimum in the total cost function (because of bimodal probability 

distributions, see figure 3.16), and may reach only a local minimum. The spectral 

estimate obtained after 25 iterations is used as the final spectral estimate for each 

of the two sound sources. 

3.6.4 Resynthesis 

The output of the separation system is an estimate of the cochlear spectrum 

of each of the two sound sources present. Since the Kopec-Bush recognition system 

uses LPC spectral estimates, it was simpler to interface to the recognition system 

by resynthesizing a separated waveform than to convert the cochlear spectrum to 

LPC codebook entries. One advantage of resynthesizing the separated output is 

that one can listen to the separated output. 

The cochlear model's filterbank output of the sum of the two speech sounds 

(before compression and half wave rectification) is used as the basis of the resyn­

thesis process. Each frequency-time region is multiplied by the percent of the 

sound (.E) that belongs to this sound source, and a frequency gain (to compen­

sate for the spectral tilt from the cochlear model). This separated cochlear output 

is then time reversed, and passed through a ba'ckwards original cascade filterbank 
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(reverse the arrows in figure 3.1). When the output of the backwards filterbank 

is time reversed again, the resulting waveform is the resynthesized output. The 

reason for time reversing the different waveforms is to compensate for the time 

delay imposed by the cochlear model in the low frequency regions. 

The resynthesis of the separated output using this method has one important 

disadvantage. An example which exhibits this difficulty is the case of a sine wave of 

100 Hz added to a sine wave of 110 Hz. The resulting signal is a sine wave of 105 Hz 

amplitude modulated at 10 Hz. If the separation system worked perfectly, it would 

correctly estimate that the amplitude of the 100 Hz sine wave was equal to the 

amplitude of the 110 Hz sine wave. However when the original sunt is multiplied 

by the constant amplitude fraction (1~), the resynthesized output sounds like a 

softer version of the original sum waveform, and not like the original 100 Hz sine 

waveform. 

3.7 Summary of Computational Model 

This chapter has described a computational model which was developed to 

separate two simultaneous talkers. The computer model is based on the theory of 

sound separation developed in chapter two. The construction of this model has 

helped clarify what decisions need to be made by the auditory system when it 

separates sounds. 

The computer model of sound separation consists of several stages of pro­

cessing. The input to the separation algorithms is the computational model of the 

cochlea developed by Lyon. The timing information contained in each frequency 

channel is then converted into an event representation, which is used to compute 

local periodicity information called the coincidence function. 

Two different separation systems were developed. The current separation 

system uses a handlabeled database of connected digit strings to compute the 

probability distributions used for both the Markov model and the iterative spectral 

estimation algorithms. 

The current separation system consists of four sequential steps: (1) an itera­

tive dynamic programming pitch tracking algorithm to determine the pitch period 
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of each sOlllld source, (2) a Markov model to determine the number of sOllllds 

present (i.e., one or two) and the type of each sOlllld source (i.e., periodic or non~ 

periodic), (3) an iterative algorithm to estimate the amplitude (in each frequency 

channel) of each sOlllld source present, using both periodic information and spec­

tral continuity constraints, and (4) an algorithm to resynthesize a waveform of the 

separated output. 
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Chapter 4 

Evaluation 

Whereas chapter two presented a theory of how the auditory system sep­

arates sounds, the precise details of how the auditory system separates sounds 

are not known. Chapter three described a computer model that separates two 

simultaneous speakers based on this theory of auditory sound separation. The 

computational model used only some of the acoustic information that the audi­

tory system is known to use (periodicity, onsets, spectral continuity), and did not 

use any higher level knowledge to aid in the separation of the two speakers. 

The computational model is a 'functional model' since it hypothesizes both 

the output of the auditory system and a mechanism to compute these quantities. 

It is not claimed that these computer algorithms are the same ones used by the au­

ditory system to separate sounds. What is claimed is (1) that the auditory system 

performs similar operations and tries to compute similar quantities (the funda­

mental frequency of each speaker over time, when each person starts and stops 

talking, and a spectral estimate of each talker) and (2) that the auditory system 

uses similar representations (such as the coincidence function) when separating 

sounds. 

The aim of the computational model of sound separation is to improve the 

ability of computers to recognize sounds in a noisy environment. Different algo­

rithms in the computer model which have specific subgoals (e.g. to track the pitch 

periodof each of two simultaneous speakers) are evaluated" on how well they per­

form the tasks they were designed to achieve. The performance evaluation reflects 
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how well these algorithms are able to achieve the different tasks, and does not 

directly reflect the ability of the theory to explain auditory sound separation. 

This section discusses the results of the following algorithms: (1) pitch 

tracker for two simultaneous speakers, (2) Markov model for determining how 

many people are speaking and the characteristics of each speaker, and (3) itera­

tive spectral estimation algorithms for computing a spectral estimate of each sound 

source. The ability of a recognition system [Kop~c and Bush 1985] to determine 

what each of the two- speakers has said is also presented. 

No performance evaluation of the cochlear model or the coincidence repre- . 

sentation is presented. These algorithms are evaluated indirectly based on the per­

formance of the different systems that use this information. To evaluate the effect 

of changing parameters of these algorithms (such as changing the time constant 

for computing periodicity information in the coincidence representation) would 

require training and testing the complete system for each value of the parameter 

that is being varied. The computational requirements for this type of evaluation 

. are not feasible at this time. 

4.1 . Experimental Results of Computer Model 

The Markov model and the spectral estimation algorithms both rely on 

probability distributions for computing how many sounds are present and the 

spectral estimate of each sound source. In order to compute these probability 

distributions, a database of simultaneous speech sounds was constructed. The 

database consists of 39 single-speaker digit strings (of seven continuous digits) 

spoken by two males and two females. It also consists of 38 examples of dual­

speaker digit strings (obtained by adding the single-speaker waveforms of a male 

and a female speaking different digit strings). The system was ~rained and tested 

on the same database of speech sounds, and was limited in size for computational 

reasons (eg, limits on disk storage, computer time necessary to process the data). 

Since the system was trained and tested on the same database, the model's per­

formance might decrease when tested on a new database of simultaneous sounds. 

The advantage of using single-speaker recordings over using recordings of two 
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simultaneous speakers is that the accuracy of the spectral estimation algorithms 

can be computed. By using the sum of two single-speaker recordings as the input 

to the separation system, the original spectrum of each speaker is known. The 

spectral estimate of each of the two speakers (produced by the computer model) 

can then be compared with the spectrum of the original waveforms to evaluate 

the spectral estimation procedures. 

Recorclings of speakers made during the presence of other interfering sounds 

show that people increase their speech level as the background noise level increases 

in amplitude [Pearsons et. al. 1976]. Their comparison of speech levels to back­

ground noise levels show that " ... people maintain about a 5 - 8 dB speech to 

noise ratio when conversing outside their homes and a 9 - 14 dB speech to noise 

ratio when talking inside their homes. " If the speakers had been recorded in the 

presence of other talkers, each of the speakers might have changed how they spoke 

to compensate for the interfering sounds (by changing their speech level, and the 

clarity of pronunciation). 

The speech database of isolated sounds was handmarked accorcling to t~e 

Markov model presented in section 3.6.2. Every 10 msec was assigned one of. 

the seven possible labels (silence, perioclic, nonperiodic, onset, offset, increasing 

transitional periodicity, or decreasing transitional periodicity). This labeling was 

used for both training and evaluation of the separation system. 

4.1.1 Pitch Tracker Accuracy 

The pitch algorithm is evaluated by comparing the pitch tracks computed 

on two simultaneous sounds with those computed on the isolated pitch tracks (it 

was not compared with a handmarked pitch track). The pitch period used for 

the isolated pitch track is equal to the loc'ation of the maximum of the average 

coincidence representation (see bottom picture in figure 3.14) of the isolated sound. 

The pitch tracks for each of the two simultaneous sounds were computed using 

the iterative dynamic programming algorithm (described in section 3.6.1). 

The results presented below are categorized by the types of sounds present. 

The two important cases are (1) when one soUnd is perioclic and the other sound 
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# Frames Pi tch Errors 
in SNR (% of frames with error magnitude = x samples) 

I SNR (in dB) Interval o 1112!3J4151 >5 

SNR ~-5 i 28 I 17.9 14.3 7.1 I 3.6 i 3.6 3.6 50.0 
-5<SNR~0 I 107 I 36.4 24.3" 6.5 14.7 I 1:9 3.7 22.4 
0< SNR ~ 5 487 51.3 22.6 6.4 3.5 ! 2.3 .4 13.6 
5<SNR~10 I 872 66.3 20.1 2.4 11.7 .2 .5 8.8 
10 < SNR ~ 15 I 971 70.3 17.8 2.7 I 1.3 .4 .2 7.2 

15 < SNR ~ 20 ! 769 71.1 18.1 1.8 1.7 .9 .5 5.9 
20 < SNR ~ 25 i 545 I 77.6 14.5 1.8 .4 .4 .7 4.6 I 

25 < SNR ~ 30 ! 385 ! 74.0 16.6 I 1.6 I .8 I 
I 

.5 .3 6.2 

I 30 < SNR ; 408 ! 83.1 7.1 .7 .5 I .0 .5 8.1 ! 

Average 4572 il 68.9 i 17.5 1 2.6 11.6 i .7 I .5 I 8.3 

Table 4.1: Distribution of pitch errors of the periodic sound when one sound source 
is periodic and the other sound source is nonperiodic [as a function of the periodic 
to nonperiodic SNR (signal to noise ratio)]. 

is nonperiodic, and (2) when both sounds are periodic. When neither sound was 

labeled as periodic, the pitch tracks have no meaning. 

Table 4.1 shows how the accuracy of the pitch tracking algorithm varies as a 

function of the signal to noise ratio (of the periodic sound source to the nonperiodic 

sound source). The frames in the database of two simultaneous digit strings were 

categorized both by the types of sounds present and the local signal to noise ratio 

between the two sounds. The signal to noise ratio 

El 
SNR = 101og1o -

E2 
( 4.27) 

is computed from the local energy ratio between the two sound sources. The 

energy of each sound source (in equation 4.1) was computed by smoothing the 

local energy (energy in a 10 msec window) using an exponential window with a 

15 msec time constant. The pitch error was computed by comparing the iterative 

dynamic programming algorithm pitch track with the pitch period computed on 

the isolated sound sources (computed from the location of the maximum of the 
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average coincidence function: see bottom picture in figure 3.14). 

The table shows that as the energy of the periodic sound increases relative 

to the nonperiodic sound, the accuracy of the pitch period increases. The accuracy 

of the periodic pitch period decreases rapidly as the signal to noise ratio decreases 

below 5 dB. The accuracy of the pitch tracking algorithm (in table 4.1) is different 

from computing the pitch track of a single sound source in the presence of a 

steady state nonperiodic noise (computing the best single pitch track, rather than 

determining the pitch of each of two sound sources). 

When one sound source was periodic and the other sound source was non­

periodic, the pitch period of the periodic sound was not determined -from the 

dominant pitch track (but from the pitch track of the weaker periodic sound) in 

8.8% of the frames. This can be attributed to one of two factors: (1) the periodic 

sound had just started and the peak in the coincidence function was not yet large 

enough to be considered as the actual pitch period, or (2) the nonperiodic sound 

had just switched from being periodic to being nonperiodic, and the dominant 

pitch track which followed this sound source's pitch period had not yet switched 

over to the other periodic sound. 

Of the frames when the pitch error of the periodic sound was greater than 

5 samples (at a sample rate of 16 KHz), (1) 38.1 % of the time the pitch period of 

the periodic sound was not obtained from the dominant pitch track, and (2) 27% 

of the time the pitch period of the periodic sound was approximately half of the 

isolated pitch track; these 'errors' can be attributed to the pitch period doubling 

of the isolated pitch track and are not really errors. 

Table 4.2 shows the accuracy of the dominant pitch track, while table 4.3 

shows the accuracy of the weaker pitch track. These tables shows that as the 

energy of the dominant periodic sound increases relative to the weaker periodic 

sound, the accuracy of the dominant pitch period increases while the accuracy of 

the weaker periodic sound decreases. The accuracy of the dominant pitch period 

decreases when the signal to noise ratio drops below -5 dB. The accuracy of the 

weaker periodic sound is much lower than the accuracy of the dominant periodic 

sound. 
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# Frames II Pitch Errors i 
in SNR II (% of frames with error magnitude = x samples) II 

I SNR (in dB) Interval I 0 I 1 I 2 I 3 I 4 I 5 I > 5 
I SNR ~-5 ! 79 I 57.0 13.9 8.9 ' 1.3 i 2.5 .0 16.5 
-5<SNR~0 893 62.5 12.2 1.3 1.3 i 1.3 1.0 20.3 

I 
0<SNR~5 I 2121 68.9 14.9 2.3 .8 I .6 .5 12.0 

I 5 < SNR ~ 10 ; 756 79.6 13.2 1.1 .8 I .8 .4 4.1 

I 10 < SNR 
I 

139 77.7 14.4 .7 .7 I .7 .7 5.0 I 
I 

Average 3988 II 69.6 I 13.9 I 1.9 I 1.0! .9 I .6 I 12.2 

Table 4.2: Distribution of pitch errors of the dominant periodic sound when 
both sound sources are periodic [as a function of the dominant-periodic to 
weaker-periodic SNR (signal to noise ratio)]. 

j , 
I , 
, 
I 

il 

# Frames I 
in SNR 

Pitch Errors II 
(% of frames with error magnitude = x samples) II 

i SNR (in dB) Interval o I 1 I 2 I 3 14 I 5 I >5 ! I 

I SNR ~-5 79 I 43.0 I 34.2 10.1 I 1.3 
I 

.0 .0 11.4 I ! I 

! -5 < SNR < 0 ! 893 34.8 28.3 I 9.7 5.5 i 2.6 1.8 17.2 i - I 
I 

0<SNR~5 2121 33.1 21.8 9.2 I 5.1 i 4.3 i 2.8 23.7 I 
i : I 

! 

5<SNR~1O 
! 

756 19.8 I 16.3 9.3 6.7 ! 5.2 4.9 37.8 i I I 
I 

10 < SNR 
I 

139 i 10.8 ! 11.5 7.2 10.8 : 5.0 2.2 i 52.5 I I 
i I I 

Average 
, , 

3988 Ii 30.4 122.1 I 9.3 I 5.6 i 4.0 I 2.9 I 25.7 

Table 4.3: Distribution of pitch errors of the weaker periodic sound when 
both sound sources are periodic [as a function of the dominant-periodic to 
weaker-periodic SNR (signal to noise ratio)]. 

When two periodic sounds are present, the errors can be divided into three 

main categories: (1) 3.2% of the time the dominant pitch period was correctly de­

termined but was assigned to the wrong sound stream (the assignment of the dom­

inant pitch period is based on which sound stream's average pitch period is closer), 

(2) 2.6% of the time the dominant pitch track is not assigned to either sound stream 

(this occurs when the difference between the dominant pitch period and the aver-' 

age pitch period for either sound stream is greater than 60% of the average pitch 
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period of that sound ·stream), and (3) 7.0% of the time there was a large error in 

the dominant pitch period which could be attributed to a pitch doubling error [de­

fined as ABS(DominantP P - ActualP Pd > M AX(5, ABS[.5(DominantP P -

ActualPPj )]) ]. These pitch doubling errors account for 57.8% of the times when 

the pitch error of the dominant pitch track is greater than 5 samples. 

The average pitch period of each talker (computed from the isolated pitch 

tracks) was used by the pitch tracking system to assign the dominant pitch period 

to the s01llld stream with the closest average pitch period. The system was tested 

using the digit strings from a male and female talker. In assigning the dominant 

pitch period to one of the two talkers, the average pitch difference between the 

male and female talkers is very helpful to the system. If two male talkers with the 

same average pitch period were speaking at the same time, the pitch algorithm 

would probably have made many errors in assigning the dominant pitch period to 

the wrong s01llld stream. A more sophisticated method of assigning pitch periods 

to sound streams is needed. 

The literature contains only one algorithm for determining the pitch period 

of each of two simultaneous talkers [Parsons 1976]; but as far as the author knows, 

this section represents the first quantitative evaluation of a dual-speaker pitch 

tracking algorithm. Future research on the dual-speaker pitch tracker may deal 

with optimizing pitch period accuracy by varying some of the many parameters in 

the iterative dynamic programming pitch tracking algorithm (such as changing the 

pitch transition cost in the dynamic programming algorithm, the time constant 

used in computing the coincidence function, the addition of a dominant frequency 

weighting so that some frequency regions are more important for the determination 

of the pitch period, etc.). 

4.1.2 Hypothesis Determination Accuracy 

The Markov model was used to determine both how many sounds are present 

and the characteristics of each sound. The system determined the best path 

through the state transition network for labeling each of the two sound sources. 

The state transition network is used by the Markov model to maintain continu-
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ity in assigning the characteristics of, each sound. The model was evaluated by 

comparing the labels assigned to each of the two simultaneous sounds with the 

manually-labeled database. 

One constraint imposed on the two sound model was that only one sound 

source could be in a transitional state in any time frame. In the two sound 

database, only .3% of the frames were handmarked with both sound sources being 

simultaneously in a transitional state. 

The probability distributions used by the Markov model were derived from 

both the one sound and two sound database, using the pitch periods computed 

from the isolated pitch tracks. Because the Markov model was constructed before 

the iterative dynamic programming pitch track was developed, the system was 

tested using both the isolated pitch tracks and the pitch tracks obtained from 

the iterative dynamic programming algorithm. The computational model was 

developed in this way (first the spectral estimation procedure was developed, then 

the Markov model and finally the pitch tracker) to use the assumptions about the 

types of sounds present for the spectral estimation procedure. After the _spectral 

estimation algorithm had been developed, the Markov model and pitch tracker 

were developed to compute the desired quantities. 

Table 4.4 shows the overall accuracy of the two sound source Markov model. 

The first case uses the pitch tracks which were computed on the isolated digit 

strings (before they were added together). The second case uses the itera'tive 

dynamic programming pitch tracks (described in section 3.6.1). 

The Markov model correctly identified 73% of the frames (the labels on 

both the male and female speakers were correct) when the system was tested 

on the same database of simultaneous sounds that it was trained on. When the 

Markov model used the iterative dynamic programming pitch tracks, the accuracy 

dropped to 26% of the frames when both sounds were correctly identified. The 

Markov model performed quite well (98.3%) in correctly labeling at least one of 

the two sound sources. 

When the Markov model used the iterative dynamic programming (IDP) 

pitch tracks, 74% of the time it did not meet the requirement of labeling both 
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Percent of States Correctly Identified 
Female: Male I Male and Female : Male or Female 

I Isolated Pitch Track : 84.8% i 86.7% I 73.3% I 98.3% I 
IDP Pitch Track i 46.9% i 50.4% i 26.0% I 71.3% i 

I J 

Table 4.4: Overall accuracy of the Markov model when two simultaneous sounds 
are present. 
The results are shown for the case when the isolated pitch tracks are used, and 
when the iterative dynamic programming pitch tracks are used. The results show 
the accuracy of the female talkers, the male talkers, when both male and female 
were identified correctly, and when either of the two were identified correctly. 

sounds correctly. There are two main categories of errors in the labeling process: 

(1) 18.3% are due to the system reversing the labels of the two speaker's (the 

. female speaker was assigned the correct label of the male speaker, and the male 

was assigned the female speaker's label), and (2) 54.4% are due to the system 

labeling one of the speakers as silent when that speaker was not silent. 

The percentages in table 4.4 reflect the accuracy of the Markov model's 

labels on the 10101 frames in the two sound database (a total of 101 seconds of 

two simultaneous talkers, at a frame rate of 100 per second). The accuracy of the 

Markov model is computed for each of the different types of sounds present. Tables 

4.5 through 4.9 show the accuracy of the Markov model for each of the major 

categories of simultaneous sounds (two simultaneous periodic sounds, periodic 

and nonperiodic sound, two nonperiodic sounds, one periodic sound, and one 

nonperiodic sound). 

Table 4.5 shows the accuracy of the Markov model labeling when both simul­

taneous sounds were handlabeled as periodic. The Markov model correctly labeled 

the two sounds as periodic 93.6% of the time when the isolated pitch tracks were 

used. When the iterative dynamic programming pitch tracks were used, the sys­

tem correctly labeled only 32.2% of the frames. Most of the errors are due to the 

system deciding that there was only one periodic sound present. This performance 

can be attributed to the fact that the Markov model was trained using the isolated 
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Label Assigned to Isolated Pitch Trackl IDP Pitch Track 
Two Periodic Sounds 

Periodic., Periodic 93.6% I 32.2% 
I Periodic, Silence I 1.2% I 46.4% J , I 
t Periodic, Nonperiodic 3.0% I 18.6% I , I 

Other II 2.2% 3.0% 

Table 4.5: Accuracy of the Markov model labeling when two periodic sounds are 
present. 

pitch tracks; when the system was tested using the iterative dynamic program­

ming pitch tracks, the system frequently failed to recognize the pitch period of the 

weaker periodic sound. 

Table 4.6 shows the accuracy of the Markov model labeling when one sound 

was periodic and the other sound source was nonperiodic. The system correctly 

labeled 55.4% of the frames when the isolated pitch tracks were used, but only 

11.2% of the frames when the IDP pitch tracks were used. When the IDP pitch 

tracks were used, the system reversed the labeling of the two sound sources 26.2% 

of the time, and 52% of the time decided that there was only one periodic sound 

present. The Markov model did not make these errors when i~ used the isolated 

pitch tracks since the pitch track of the nonperiodic sound would be at some 

random location with respect to the periodic sound. 

Table 4.7 shows the accuracy of the Markov model labeling when both sounds 

were nonperiodic. The Markov model correctly labeled both sounds as nonperiodic 

88.9% of the time when the isolated pitch tracks were used. When the Markov 

model used the IDP pitch tracks, 42.4% of the time the system labeled the sounds 

as one nonperiodic sound, and 34.3% as one nonperiodic and one periodic sound. 

The reason for this performance difference is that the system performed better 

when it was tested with the same pitch values as the training data than when it 

was tested using the IDP pitch periods. 

Table 4.8 shows the accuracy of the Markov model labeling when one sound 

source was periodic and the other sound source was silent. When the Markov 
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I Label Assigned to II Isolated Pitch Track IDP Pitch Track 
Periodic and Nonperiodic Sound I 

Periodic, Nonperiodic 55.4% 11.2% 

I Nonperiodic, Periodic I .2% 26.2% 

r Periodic, Silence I 6.7% 25.2% 
Silence, Periodic .0% 26.8% 

Silence, Nonperiodic 1.0% .8% 
Periodic, Periodic I 27.8% 7.0% 

Other 8.9% 2.6% 

Table 4.6: Accuracy of the Markov model labeling when one periodic sOlIDd and 
one nonperiodic sound is present. 

I Label Assigned to Ii Isolated Pitch Track i IDP Pitch Track I , 
Two N onperiodic Sounds Jl ! 

, , , 

: Nonperiodic, Nonperiodic !I 88.9% I 5.6% 
, 

Nonperiodic, Silence Ii 6.3% 42.4% I , 
I Nonperiodic, Periodic Ii .0% 34.3% , , I: I , 

Other 'I 4.7% 17.6% ! 
" 

Table 4.7: Accuracy of the Markov model labeling when two nonperiodic sounds 
are present. 

model was tested using the IDP pitch tracks, 76.8% of the time it would correctly 

! Label Assigned to Ii Isolated Pitch Track 
! Periodic and Silent Sound ,I 
I Ii 

I IDP Pitch Track i 

I 36.5% i 
, 40.3% 

Nonperiodic, Nonperiodic Ii 24.6% 3.3% 
Other ,i 13.0% 19.9% 

Table 4.8: Accuracy of the Markov model labeling when one periodic sound is 
present. 
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Label Assigned to I Isolated Pitch Track I IDP Pitch Track ! 
Nonperiodic and Silent Sound I I I 

I Nonperiodic, Silence 49.7% I 25.0% ~ I I 

Silence, Nonperiodic I 8.5% 35.1% I 
Nonperiodic, Nonperiodic j 31.3% 2.5% 

I 

I 
I Nonperiodic, Periodic. .3% 11.4% I I 

Other 10.1% i 25.9% ! 
I 

Table 4.9: Accuracy of the Markov model labeling when one nonperiodic sound is 
present. 

determine that there was only one sound present, but it made a large number of 

errors in deciding which of the two sound streams was periodic. 

Table 4.9 shows the accuracy of the Markov model labeling when one sound 

source was nonperiodic and the other sound source was silent. Using the IDP 

pitch tracks, 60.1% of the time the Markov model correctly determined that there 

was only one nonperiodic sound present, but it made errors in determining which 

of the two sounds was nonperiodic. 

This algorithm represents the first system that can determine both how 

many sounds are present and recognize the characteristics of each sound source. 

The limited performance of the Markov model is due to both the difficulty of 

determining the correct label for each of two simultaneous sounds and to the 

simplicity of the algorithm used. Future research on determining how many sounds 

are present and the characteristics of each sound can focus "on; (1) training the 

system using iterative dynamic programming pitch tracks, (2) conditioning the 

probability of a particular type of sound on more data points than just the value 

of the smoothed coincidence function at the pitch period, and (3) implementing 

some of the information sources for assigning group objects to sound streams 

presented in chapter two. 
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4.1.3 Spectral Estimation Accuracy 

Most speech recognition systems rely on spectral estimates of the speech 

utterance to classify what words a talker has spoken. In order for a recognition 

system to correctly classify the speech of a talker, it is essential that the system use 

an accurate estimate of the spectrum of that talker. The output of the spectral 

estimation procedure is an estimate of the average cochlear spectrum for each 

of the two sounds present. This spectral estimate can be compared with the 

spectrum of each of the original sounds to evaluate how accurately the algorithm 

has estimated the spectrum of each sound source. 

The cochlear spectrum consists of the average output of each of the 85 

frequency channels of the cochlear model. Each cochlear spectrum is normalized 

in amplitude by the following equation: 

1 
Norm(Specd = J Specj 

,,85 ( ')2 
£..Jj=l Sj J 

( 4.28) 

%S 1 D
· EuclidDist[Norm(OrigSpecd,Norm(SepSpecj)] % 

o pectra 'tstance = X 100 0 
EuclidDist[N orm( OrigSpecj), Norm(SumSpec)] 

( 4.29) 

The accuracy of the spectral estimation algorithm is computed by compar­

ing the euclidean distance between the original and separated cochlear spectrum 

with the euclidean distance between the original and the cochlear spectrum of 

the simultaneous sounds. If the separated cochlear spectrum is very close to the 

original cochlear spectrum, this fraction will be small. If the percent spectral dis­

tance (equation 4.3) is less than 100%, this means that the separation program 

has improved the spectral estimate (over the case of no separation). If the per­

cent spectral distance (equation 4.3) is greater than 100%, this means that the 

spectrum of the sum of the two simultaneous sounds is a better estimate of the 

original spectrum than the estimate obtained from the separation program. 

Table 4.10 shows how the spectral estimation procedure improves the spec­

tral estimate of the weaker sound (from a cumulative spectral distance of 856 

down to 669) but does not improve the spectral estimate of the stronger sound 

132 

\ 
L. 

\ 

l 

, 
i 
,. 



) 
".c 

Stronger Sound Weaker Sound 
I Both Sounds Correctly Labeled ,I 2M = 108.8% 856 = 78.2% 

Table 4.10: Percent spectral distance of t~e spectral estimation procedure when 
both sounds are correctly labeled. 

Ii Correctly Labeled Sound 
One of Two Sounds 11 ~ = 99.7% 

'I Correctly Labeled !r 

Incorrectly Labeled Sound: 
~ = 144 3% !I 1213 • 

I 

Table 4.11: Percent spectral distance of the spectral estimation procedure when 
one of the two sounds are correctly labeled. 

source. Table 4.11 and 4.12 show that when the system has incorrectly labeled the 

sounds, the spectral estimation procedure results in a deterioration of the spectral 

estimate of each sound source. 

Table 4.13 shows how the spectral estimation procedure improves the spec­

tral estimate when two periodic sounds are present and the correct control in­

formation is used. Both the initial spectral and the iterative spectral estimation 

procedure provide spectral estimates better than the original unseparated spec­

tral estimate. The last line in table 4.13 is the accuracy of the separated estimate 

if the actual spectral ratio (equation 3.20) is known. Table 4.14 shows similar 

improvements for a periodic and nonperiodic sound source with known control 

information. The first line in table 4.14 is the spectral improvement that would 

result if a Wiener filter had been used to separate the periodic and nonperiodic 

sound sources (a Wiener filter can be used since the average spectrum of a periodic 

sound is different from a nonperiodic sound). 

Figure 4.1 shows the spectral distance improvement as a function of the 

number of iterations of the spectral estimation algorithm. Initially, the estimation 

procedure improves the spectral estimate of each sound source with each itera­

tion. However, the spectral distance reaches a minimum after approximately 10 

iterations and begins a gradual increase in the spectral distance. The iterative 

133 



I II Stronger Sound I Weaker Sound 
I Neither Sound Correctly Labeled II WI = 324.9% I fWo = 118.0% 

Table 4.12: Percent spectral distance of the spectral estimation procedure when 
neither sounds is correctly labeled. 

I Percent Spectral Distance 
Initial Separation Estimate I 78.5% 

Separation Estimate after 10 Iterations 69.3% 
Separation using actual ratio between sounds ! 38.8% 

Table 4.13: Percent spectral distance for two periodic sounds using isolated pitch 
tracks and correct state labels. 

algorithm is not guaranteed to converge to the global minimum in the spectral 

distance contour. The bimodal shape of some of the probability distributions (see 

figure 3.16) is one reason why the algorithm is not guaranteed to converge. 

This system is the first algorithm to compute a spectral estimate of each 

sound source using spectral continuity constraints. It has the ability to compute 

a spectral estimate when two periodic sounds are present, or a pe~iodic and a 

nonperiodic sound is present. The spectral estimation procedure does not work 

well when errors are made in either the determination of the how many sounds 

are present or in the types of sounds present. 

I Percent Spectral Distance 
I Periodic Sound! Nonperiodic Sound 
I 72.3% ' 59.6% Wiener Filter 

Initial Separation Estimate I 65.4% 50.5% 
Separation Estimate after 10 Iterations I 55.5% 41.5% 

Separation using actual ratio between sounds '28.2% 17.7% 

Table 4.14: Percent spectral distance for a simultaneous periodic and nonperiodic 
sound using isolated pitch track and correct state labels. 
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Figure 4.1: Spectral distance improvement as a function of the number of itera­
tions. 
Left Side: Spectral distance improvement when both sounds are periodic (top is 
louder periodic-sound and bottom is weaker periodic sound). Right Side: Spectral 
distance improvement when one sound is periodic and one is nonperiodic (top is 
periodic sound and bottom is nonperiodicsound). 

4.1.4 Recognition Accuracy 

One goal of the sound separation system is to improve the ability of com­

puters to recognize speech in the presence of interfering sounds. The Kopec-Bush 

[85] recognizer which was used to test the separated output, uses a network based. 

approach to speaker-independent continuous digit recognition. The recognition 

system is designed for isolated sounds, and computes the best path through the 
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Correct I Substitutions I Insertions 
I 

I Deletions 

Isolated Sounds 87.0% 10.5% 2.5% 1.4% 
'R h . dI I d % % % % I . esynt eSlze so ate Sounds Ii 86.1 0 i 10.6 0 3.3 0 .0 0 r I 

I Two Simultaneous SOWlds I 
Male 44.4% 

I 
36:4% 19.2% 3.8% 

Female 34.2% 39.6% 26.2% 3.5% 
Separated Simultaneous Sounds I 

Male 57.0% 39.6% - I 17.8% 18.7% 
Female 31.7% 

I 
52.6% I 15.7% 20.9% 

Table 4:15: Accuracy of the recognition system. 

network using the gain-optimized Itakura-Saito distance measure between vector 

quantized LPC spectral templates and the LPC spectrum of the incoming sOWld. 

The accuracy of the recognized output was computed by comparing the 

string of digits that each person actually said with the output digit string of the 

recognition system. Every possible way of matching the recognition string of digits 

with the actual digit string is computed to find the match that yields the highest 

percentage of correct digits. The errors made by the recognizer are categorized 

as substitutions (recognizer output is one digit while the person said a different 

digit), insertions (recognizer has an extra digit), and deletions (recognizer missed 

one of the original digits); The percentage of correct digits (equation 4.4) reflects 

the accuracy of the recognition system. 

#Digits Correctly Recognized 
% Correct Digits = X 100% 

#Digits Hypothesized by Recognizer 
( 4.30) 

Table 4.15 shows the results of the recognition system evaluation .. The recog­

nizer was tested on the original database of isolated sOWlds and the resynthesized 

version of each of the isolated digit strings. The results show that the analysis and 

resynthesis of a digit waveform did not noticeably decrease the performance of the 

recognition system. The system was also tested on the two simultaneous talkers 

without the aid of any separation system. The output of the recognition system 

136 

! 

I 

J 
I 

i 



\-

\ 

L 

was compared with each of the actual digit strings of both the male and female 

talkers. The recognition system was also tested on the individual resynthesized 

waveforms of both the male and the female talkers. 

The separation system improved the recognizer's ability to recognize the 

male voice from 44.4% to 57.0%. It did not improve the recognition performance 

of the female voice. The increase in deletions by the recognition system when tested 

on the separated output (from 3% to 20%) reflects the fact that the separation 

system often missed the detection of the weaker sound source (40% of the frames 

were labeled as one sound being present by the separation system when there 

were two sounds present; since the system decided that there was only one sound 

present, one of the sound streams was silent during these intervals). 

These results represent the first quantitative evaluation of a computer recog­

nition system attempting to recognize each of two simultaneous talkers. 

4.2 Overview 

This chapter presented an evaluation of a system which attempts to separate 

two simultaneous talkers. The evaluation consisted of (1) the iterative dynamic 

programming pitch tracker's ability to correctly determine the pitch period of each 

sound source, (2) the determination by the Markov model of how many sounds 

are present and what the characteristics of each sound source is, (3) the acc~acy 

of the spectral estimate of each of the two sounds present, and (4) the results of 

the recognition system which attempted to recognize each of the two simultaneous 

talkers. The results obtained suggest that there is a need for improvement in each 

of these algorithms in order to achieve a high level of separation performance. 

There are many different algorithmic modifications which can be tested to 

try to improve the system's performance. The next chapter will outline some of 

the major changes which this author viewes as important improvements in the 

computational model of auditory sound separation. 
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Chapter 5 

Future Directions 

The computational model presented in this thesis represents an important 

step in allowing computers to determine both how many sounds are present and 

what each speaker is saying. The separation algorithms are based on the theory of 

. auditory sound separation (presented in chapter two). Currently, the algorithms 

use only some of the available monaural acoustic information sources, and do not 

use any of the higher level processes described in the theory of auditory sound 

separation. 

Not only can one use additional information to improve the current separa­

tion system, but one can also modify the separation algorithms that are currently 

used. This chapter will describe changes that are possible in the current separa­

tion algorithms and some of the different information cues that can be added to 

help separate two simultaneous sounds. 

5.1 Modifications in the model 

5.1.1 Improved Two Talker Pitch Tracking 

There are many possible modifications that one can make to the pitch 

tracking algorithms described in section 3.6.1. While the pitch tracker was able to 

follow the pitch period of the dominant periodic sound fairly well, the pitch error on 

the weaker periodic sound was fairly large. By modifying some of the parameters 

of the pitch tracking algorithm (and subsequently testing each modification with 
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respect to performance of the pitch tracker), a better two talker pitch tracker can 

be constructed. These parameters include: the method of assigning the dominant 

pitch period to one of the two sound streams, the transition cost used in computing 

both the dominant and secondary pitch period, the function used to compute 

the score of the weaker pitch period, the signal used to smooth each row of the 

coincidence representation, and the different parameters used in computing the 

coincidence representation. 

Even if one could precisely determine both pitch periods, one still has to 

determine which sound stream these pitch periods belong to. When both talkers 

have the same average pitch period, determining which pitch period belongs to 

which talker is a difficult problem which has no straightforward solution. 

5.1.2 Improved Spectral Estimation 

The spectral estimation algorithms described in section 3.6.3 used an iter­

ative algorithm to combine both periodicity information and spectral continuity 

constraints. 

The periodicity information consisted of probability distributions of the am­

plitude ratio (1~) conditioned on the value of the coincidence function at different 

locations. If the two sounds consisted of one speaker's voice being periodic while 

the other speaker's voice was nonperiodic, the amplitude ratio was conditioned 

on the value of the smoothed and normalized coincidence function (see top right 

picture in figure 3.13) at the pitch period of the periodic speaker. The pitch pe­

riod was obtained from the iterative dynamic programming pitch tracker, and the 

decision whether the sound was periodic or nonperiodic was obtained from the 

output of the Markov model. If both sound sources were periodic, the ampli­

tude ratio was conditioned on the value of the coincidence function at P1 , P2 , and 

Pdif! = Abs(P1 - P2 ). 

Although the values of the coincidence function at every location were used 

in the determination of the pitch period for each of the two speakers, only the 

values of the coincidence function at a few select points (related to the pitch pe­

riod) were used when computing the amplitude ratio of the two sounds based on 
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periodicity information. The width of the amplitude ratio histograms reflects the 

uncertainty in the amplitude ratio information based on the value of the coin­

cidence function at the pitch period. The distributions might have narrowed in 

width (and therefore uncertainty) if the amplitude ratio were conditioned on the 

value of the coincidence function at additional delay locations. However, in order 

to condition the amplitude ratio on more information, more probability distribu­

tions are needed. A larger database would be required to accurately compute all 

of these new probability distributions. 

The spectral estimation algorithms used depend on accurate pitch informa­

tion. Wormation about the accuracy of the pitch tracks' could be incorporated 

into the spectral estimation algorithms in several different ways. By increasing the 

width of the AC smoothing filters (see figure 3.12), the value of the smoothed coin­

cidence function around the pitch period will not vary as much, and will therefore 

be less sensitive to small pitch errors. An increase in the smoothing function's 

width may broaden the probability distributions (which are conditioned on the 

periodicity information) and therefore increase the uncertainty of the amplitude 

ratio. Therefore, one would like to use as narrow a smoothing filter as is possible. 

One possible solution would be to first predict the accuracy of the pitch track, and 

to use a smoothing algorithm whose width depended on the predicted accuracy 

of each pitch track. When the pitch periods obtained from the iterative dynamic 

programming pitch tracker cannot be determined very· accurately, spectral esti­

mation algorithms would use a wider smoothing function than when the pitch 

periods could be determined with more precision. (Note: in the case of speech 

enhancement, this would correspond to varying the width of the co~b filter based 

on the accuracy of the pitch period) 

5.1.3 Assignment of Group Objects to Sound Streams 

The current separation system assigned group objects to sound streams 

using a very simple mechanism. If the Markov model determined that there was 

a periodic group object present that overlapped in time with a nonperiodic group 

object, the nonperiodic group object was assigned to the other sound stream from 
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the periodic group object. The periodic group object was assigned to a sound 

stream based on which sound stream had a closer average pitch period to the 

pitch period of the group object. 

If the nonperiodic group object did not overlap in time with any other group 

object, the separation system would not know which sound stream to assign this 

nonperiodic group object to. The system did make errors in assigning group objects 

to the wrong sound stream. 

The theory of auditory sound separation described many different sources 

of information that could be used by the auditory system in determining which' 

group object belonged to which sound stream (see section 2.4.5.3). The current 

computational model implemented only one of these information cues. The addi­

tion of these other information sources could be used to improve the assignment 

of group objects to sound streams. 

The use of spectral continuity between group objects is one of the acoustic 

information sources that can possibly improve the assignment of group objects to 

sound streams. A change by the vocal cords may alter the characteristics of speech 

from periodic to nonperiodic, but the spectral transition between the periodic and 

nonperiodic speech segments will reflect the continuity in the articulatory domain. 

This spectral continuity between the spectrum at the onset of one group object 

with the spectrum at the offset of a previous group object can be used by a 

separation system in the assignment of group objects to sound streams. 

5.1.4 Addition of a 'MASKED' Hypothesis 

One of the major sources of error in the current separation system :was the 

determination of how many sounds are present. In order to determine how many 

sounds are present, the system must determine how many hypo~heses are needed 

to explain the data at the current time. 

All 'mistakes in the determination of how many group objects are present 

and when group objects start and stop lead to errors which are compounded by 

the spectral estimation procedure. When the system misses the detection of a 

second group object, all the energy is mistakenly assigned to the only group object 
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present. When the system detects a group object which is not present, energy will 

be assigned to this group object even though there is no sound source present. Even 

when a group object is correctly determined to be present, mistakes about when 

this group object starts and stops lead to similar" types of errors. For example, if the 

system starts a group later than the group object actually starts, then additional 

energy will be assigned to the other sound source and will not be assigned to the 

sound source which is actually present. 

As the second sound source gets weaker and weaker in amplitude (with 

respect to the first sound source), it becomes more and more difficult to determine 

when group objects from this sound source are present, and when these group 

objects start and stop. At some amplitude level, it may be impossibl~ to determine 

what is happening to the weaker sound source. Only during silent intervals of 

the stronger sound source can the system gather accurate information about the 

second sound source. 

Since it can be very hard to determine the properties of the weaker sound 

source, the addition of an extra masked state in the state transition diagram (see 

figure 3.15) might be appropriate. When the system believes that a second sound 

source is present, but it can not determine what the characteristics of that second 

sound source are, the masked hypothesis would be the appropriate label for the 

state of this sound source. The addition of a masked state would not allow for 

this sound to be separated from the stronger interfering sound, but it would allow 

a recognizer to know that the separation system believed that the weaker second 

sound source is present, even though the system can not determine what it is. In 

order for this masked state to serve a useful function, the recognition system must 

have some way of dealing with a sound when it is in the masked state as we have 

reason to believe the auditory system does. 

142 

I 
I 

\ 

l 



\ 
, ( 

5.2 Additional Information Sources for Sound 
Separation 

5.2.1 Binaural Information Processing 

This thesis has focused on how monaural information is used to separate 

two simultaneous sounds, even though we know that the auditory system uses 

both monaural and binaural information to separate sounds. Binaural information 

such as the timing and intensity differences between the cochlear output of the two 

ears are used by the auditory system to help it focus on the sound coming from a 

particular direction [see Lyon 1983 and Lindemann 1983 for computer models of 

this process]. In addition to these binaural information cues, the auditory system 

can also combine the results of monaural sound separation processing (performed 

on the cochlear output of each ear) to help it separate the incoming sounds. 

The experimental results of Cutting [1976] indicate that the results of each 

ear's monaural processing are combined at several different levels (sound localiza­

tion, fusion of local acoustic features, fusion of linguistic features) to form a new 

representation at that level. The interaction between the monaural and binaural 

system only serves to make a difficult problem (understanding how the auditory 

system separates sounds) even harder. We do not yet know the details of how the 

monaural and binaural processes interact to separate sounds. Even though we do 

not know how the auditory system combines monaural and binaural information 

for sound separation, one can construct a separation system that uses binaural 

information to help separate sounds. 

5.2.2 Higher Level Processing 

The phenomenon of 'auditory induction' and 'phonemic restoration' [War­

ren 1971, 1972, 1974] demonstrates that the auditory system uses its knowledge 

about sounds to help it separate them from noise. The contextual information con­

tained in a model of the sound that we are listening to can also help a computer 

separate one sound from another. 

If the background noise IS a repetitive sound such as a typewriter or the 
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ringing of a telephone, a computer model of the incoming sound can be used by 

a separation system to help assign incoming neural events with the appropriate 

model. Even though it is not clear how these sound models can help in the detec­

tion of different sound sources (the lowering of the SNR of this sound's detection 

threshold), they can be used by the spectral estimation algorithms to compute an 

estimate of each of the two simultaneous sound sources. 

The addition of higher level processing can also help in the assignment of 

group objects to sound streams. In the /three/ - /seven/ example discussed in 

section 2.3.1.6, after each of the group objects has a phonetic label, linguistic 

information (about the likelihood of different phoneme sequences) can be used to 

assign the /s/ of the digit /seven/ to the female sound stream. The addition of 

these higher level processes can help to correct the errors when the group objects 

were correctly identified but assigned to the wrong sound stream. 

5.2.3 Interface with a Recognition System 

The output of the current separation system was evaluated using a recog­

nition system designed for a single speaker. It is possible that the recognition 

performance would have increased if the system had been evaluated using a recog­

nition system specifically designed to deal with more than one simultaneous sound. 

The simplest modification to a recognition system would be the use of a dif­

ferent distance metric, one which was developed for dealing with two simultaneous 

sounds [Bridle et. al. 1984]. This spectral matching technique uses not only the 

reference spectrum and the spectral estimate of the desired sound, but also the 

spectral estimate of the noise spectrum. 

Another possible modification would be to use information about the accu­

racy of the spectral estimate of each sound source in the spectral distance metric. 

The output of the separation system is not only a spectral estimate'of each sound 

source, but also includes an estimate of the accuracy of the spectral estimate. The 

spectral accuracy information is easily determined from the width of the different 

amplitude ratio probability distributions [see figure 3.16]. By knowing both the 

spectral estimate and the accuracy of the spectral estimate for each sound source, 
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one can more accurately compute the probability that this spectrum denotes a 

specific phonetic category. 

More complicated recognition systems which could interpret the 'masked' 

state described in section 5.1.4 are also possible. When the weaker sound is too 

weak to be detected accurately, instead of deciding that this sound source was 

silent, the separation system would decide that the sound source was 'masked' by 

the other sound. The recognizer would interpret the masked state differently from 

a silent state [see figures 2.2 and 2.3 for an illustration of the difference between 

the silence and masked state]. The addition of a masked state in a recognition 

system would help to reduce the number of words that are missed by the current 

recognition system (caused when the weaker sound source was not detected). 

5.3 Future Psychoacoustic Experiments 

There are many details of human auditory processing which remain un­

known. Our understanding of the computations performed by the auditory system 

is limited primarily to the peripheral auditory system. Details of the computations 

performed at levels beyond the cochlea are sparse. Most of the information that 

is known (psychoacoustic experiments) about the auditory system deals with the 

perception of different sounds by a human listener. 

The field of pitch perception illustrates our lack of a detailed understand­

ing of how the human auditory system computes periodicity information. The 

psychophysical literature contains hundreds of different experiments on the per­

ception of pitch by the auditory system. There are currently four main theories 

on how the auditory system computes pitch. These are the theories of Goldstein, 

Wightman, Terhardt, and Licklider. The first three of these theories (Goldstein, 

Wightman, Terhardt) are mathematical models, which attempt to compute the 

same pitch value that is computed by the auditory system. Since the auditory 

system could have computed that pitch value in a different way from the above 

theories, they do not necessarily reflect the computations that are performed by 

the auditory system. The theory which comes the closest to being a model of the 

computations performed in auditory pitch perception is Licklider's theory. How-
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ever, Licklider's theory describes only part of the computations that might be 

performed by the auditory system (the rest are left for a neural network). Over 

thirty years of experimental research on pitch perception has still not determined 

the precise operations that are actually performed by the auditory system during 

the computation of periodicity information. 

It is extremely difficult to determine how the auditory system computes 

what it does. It will probably be many years before the detailed computations 

performed by the auditory system will be well understood. In the meantime, we 

can refine the theory of auditory sound separation, hypothesize different com­

putational mechanisms, compute the results obtained from these algorithms and 

compare them to the results obtained from the auditory system. The refinement of 

a computational model and subsequent comparison with the results from auditory 

psychoacoustic experiments can help to determine what algorithms the auditory 

system might use to interpret the information that it hears. 

5.4 Summary', 

The field of sound separation is a new and exciting area of auditory research. 

It represents an opportunity for researchers to apply their knowledge about the 

auditory system to develop computational models of auditory sound separation. 

It is also an opportunity to test our models of auditory processing against the 

auditory system in order to modify and improve them. 

The development of computer models of auditory processing requires a great 

deal of computational resources. The computation time required to run these 

algorithms is currently the limiting factor in the time taken to develop and test new 

separation algorithms. Since many of the algorithms are simple and repetitive (the 

same operation takes place in each frequency channel every 10 msec), new SIMD 

computer architectures [Lyon 1984] represent a promising approach to providing 

the computation power needed at a reasonable cost. The availability of sufficient 

computer power will allow researchers to develop and test computer simulations 

of auditory processing. 

The addition of top-down information from a higher level processing system, 
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and the interface with a recognition system designed to handle multiple simulta­

neous sounds, are important steps which are needed to form a complete model of 

auditory sound separation. 

It is the author's view that an analogy can be made between the future of 

sound separation and the field of speech recognition. Initially, there is a great 

deal of room for increasing the performance of sound separation systems. After a 

certain period of time, all the simple improvements will have been made, and to 

attain performance levels which are close to the auditory system will require long 

years of hard effort and scientific study. 

147 



Appendix 1 

In section 3.3, two advantages of using coincidence formula number four were 

discussed. The first advantage is that the coincid~nce of two different events must 

always be less than the coincidence of one of those events with itself. The second 

advantage is that this formula enhances the modulation depth of the resulting 

coincidence representation. This appendix will prove these two results. 

Result # 1. Show that: 

Coincidence(eventa., eventa ) ?: Coincidence(eventa , eventb) Yeventa., eventb 

(1.1) 

The coincidence function is defined as follows: 

(1.2) 

When eventa. is equal to eventb , 

Coincidence (eventa. , eventa.) = areaa. . (1.3) 

Substituting the right hand side of equations 1.2 and 1.3 into equation 1.1, 

we must show that: 

(1.4) 

This can be rewritten as: 

a + b (min( a, b) ) 2 a> -- X 
- 2 max (a, b) 

'l:/a,b (1.5) 

For a fixed value of a, b must be greater than a, equal to a, or less than a. 

Each of these three cases is examined below. 
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1. b> a 

Equation 1.5 can be rewritten as: 

a b (a2
) a>(-+-) -

- 2 2 b2 
Va, b (1.6) 

Which can be rewritten as: 

(~~ + E) 
a> a Va, b 

- 2 (1. 7) 

Since b > a , both fractions on the right hand side are less than 1.0, and 

their sum is less than 2.0 Therefore, the inequality holds in this case. 

2. b = a 

This case reduces to a ~ a, which is true. 

3. b < a 

Equation 1.5 can be rewritten as: 

a> ~ (b2

) 
- 2 a 2 

Va, b (1.8) 

Which can be rewritten as: 

Va,b (1.9) 

Since b < a, the first term on the right hand side is less than a. The second 

term on the right hand side is a positiye quantity, and therefore further 

reduces the right hand side. Therefore, the inequality holds in this case. 

Since equation 1.1 holds for all three cases, it is true for all a and b. 

Result # 2. Show that coincidence formula yersion four enhances the coin­

cidence representation for an amplitude modulated signal, while the other three 

yersions do not. 
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Figure 1.1: Top: Output of a single frequency channel of the cochlear model over 
time. Bottom: The event representation and the parameters of each event. Note 
the slight amplitude modulation at the pitch period Po. 

For simplicity, let us consider the output of a single cochlear filter whose 

frequency location is close to the second harmonic of a periodic signal. The o:utput 

of this frequency channel of the cochlear model is slightly amplitude modulated, 

since this channel does not completely filter out the other harmonic components. 

An example of this channel's output is shown in figure one. 

The value of the coincidence representation at a delay equal to the pitch 

period (column two in table one) is equal to C(eventl' events) + C(event 2 , event 4 ). 

The value of the coincidence representation at a delay equal to half the pitch period 

(column three in table one) is equal to C(event 1 , event 2 ) + C(event 2i event:!). The 

amplitude modulation of the original cochlear output is equal to l~€ = 1 - c. 

The modulation depth of the original cochelar output is equal to 1 - l~€ = €. 

The amplitude modulation of the coincidence representation is equal to the value 

at half the pitch period (column three) divided by the value at the pitch period 

(column two). The modulation depth of the coincidence representation is equal to 

one minus the fraction of column three divided by column two. 
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I Version Value of Coincidence Value of Coincidence I Modulation Depth I 
Representation at Representation at of Coincidence 

I . 

delay = Pitch Period delay = half Pitch Period I Representation 
1 I 1 + (1- €)2 (1 - €) + (1 - €) ~ !€2 ., 
2 I 1 + (1 - €) Yl- € + y'1- € ~ 1€2 

3 1 + (1- €) 2 € 

4 1 + (1 - €) 2 2€ _ €2 

Table 1.1: How the Coincidence Representation of figure one varies as a function 
of which formula is used to compute the coincidence of two events. 

Since € is small, the output of the cochlear model is slightly amplitude mod­

ulated. When the coincidence representation is computed on this amplitude mod­

ulated signal, can we determine what the pitch period is from the coincidence 

representation? If we used the first or second version of the coincidence formula, 

the value of the coincidence function at half the pitch period would be virtually 

identical to the value at the pitch period (since €2 is very small). Therefore, we 

would have great difficulty distinguishing between Po and ~ Po as the correct pitch 

period. The amplitude modulation present in the cochlear model's output is pre­

served.in the coincidence representation using formula three, and is enhanced when 

formula four is used. This enhanced modulation makes the determination of Po 

as the correct pitch period easier. 
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