Photographic Technology wiki: PhotoTechEDU

Lecture 21: June 13, 2007 Visualizing via Matlab: Color Profiles, Ray Tracing, Diffraction

Richard F. Lyon Google Research dicklyon@google.com Empirical and Visualization Approaches to Topics in Photography, Using Matlab

- ICC Color Profiles: parsing profiles to see what's in them; different types
- Ray Tracing: brute-force numerical ray tracing for the non-Gaussian situation; example: aberration caused by a glass plate (filter or prism, a plano optic)
- Diffraction: brute-force vector summing to find diffraction-limited optical spot, including mis-focus effect

ICC profile format

ICC profile tags: signature + data

```
switch sig
  case 'cprt'
                                                 Easy cases: data are
   copyright = char(data)
                                                     characters, byte index,
  case 'desc'
                                                     or 32b XYZ values
   description = char(data)
                                                 Also various tables, usually
  case 'dmdd'
                                                     as unsigned 16b
   devicemodel = char(data)
  case 'vued'
   viewingdesc = char(data)
  case 'meas'
   illuminantnumber = data(datasize(i))
   illuminants = ['unk'; 'D50'; 'D65'; 'F2 '; 'D55'; 'A '; 'E '; 'F8 '];
   illuminant = illuminants(illuminantnumber+1,:)
  case 'wtpt'
   [whitepointXYZ, wxyz] = extractXYZ(data)
  case 'A2B0'
   table = extractTable(data)
  case 'rTRC'
   redCurve = extractCurve(data)
```

Official sRGB 'mntr' profile from HP

```
>> readiccprofile('sRGB.icm')
fn =
sRGB.icm
header =
 HLino mntrRGB XYZ
                             1 acspMSFT IEC sRGB
     -HP
tagcount =
  17
cprt
                            (copyright is a REQUIRED tag)
copyright =
text Copyright (c) 1998 Hewlett-Packard Company
desc
description =
desc sRGB IEC61966-2.1 sRGB IEC61966-2.1
```

sRGB white, black, and primaries

sRGB "device" and "viewing" tags

sig = dmnd devicema	nufacturer =		
desc l	EC http://www.iec.ch	IEC http://www.iec.ch	
sig = dmdd devicemo desc . 61966	del = IEC 61966-2.1 Default RGI -2.1 Default RGB colour sp	B colour space - sRGB ace - sRGB	.IEC
sig = vued viewinade	esc =		
desc , Viewin	Reference Viewing Conditing Conditing Condition in IEC61966-2	on in IEC61966-2.1 .1	,Reference

sRGB Tone Reproduction Curves (1D LUTs of 16b values)

Profile header

Table 13 — Profile header fields

Byte Position	Field Length (bytes)	Field Contents	Encoded as
03	4	Profile size	UInt32Number
47	4	Preferred CMM Type	See 7.2.3
811	4	Profile version number	See 7.2.4
1215	4	Profile/Device Class 'SCNR', 'mntr',	See 7.2.5
1619	4	Colour space of data (possibly a derived space) [i.e. "the canonical input space"]	See 7.2.6
2023	4	Profile Connection Space (PCS) [i.e. "the canonical output space"]	See 7.2.7 'RGB ' or 'Lab
2435	12	Date and time this profile was first created	dateTimeNumber
3639	4	'acsp' (61637370h) profile file signature	See 7.2.9
4043	4	Primary Platform signature	See 7.2.10
4447	4	Profile flags to indicate various options for the CMM such as distributed processing and caching options	See 7.2.11
4851	4	Device manufacturer of the device for which this profile is created	See 7.2.12
5255	4	Device model of the device for which this profile is created	See 7.2.13
5663	8	Device attributes unique to the particular device setup such as media type	See 7.2.14
6467	4	Rendering Intent	See 7.2.15
6879	12	The XYZ values of the illuminant of the Profile Connection Space. This must correspond to D50.	XYZNumber

A 'scnr' profile – there is no 'camera' class

>> readiccprofile('epsn1p04.icm') header = *KCMS scnrRGB Lab # acspMSFT EPSOnone tagcount = 23 cprt COPYRIGHT (c) 1992=1994 Eastman Kodak Company. All rights reserved text dmdd desc ES-800C ES-800C ES-800C 0<Q -0T-0 "Private data tags allow CMM K019 developers to add proprietary UNKNOWN tag signature value to their profiles." datastring = Ektacolor Plus Ektacolor Plus 256 levels/Color desc Ektacolor Plus Scanning: 1 pass/Halftone: none/Drp

Lookup table (LUT) tags

Quoting ICC1v42_2006-05.pdf:

9.2.1 AToB0Tag

Tag signature A2B0 (41324230h)

Allowed tag types: lut8Type or lut16Type or lutAtoBType

This tag defines a colour transform from Device to PCS using lookup table tag element structures. For most profile classes it defines the transform to achieve perceptual rendering (see table 21). The processing mechanisms are described in lut8Type or lut16Type or lutAtoBType (see 10.8, 10.9 and 10.10).

So what's a "Profile Connection Space" (PCS)?

- A profile tells you how to convert colors of a device or an abstract colorspace, to or from a standard "profile connection space".
- PCS is usually 16b (u1Fixed15Number) linear CIEXYZ with D50 white point (unlike sRGB and most monitor spaces which use D656 white point)
- PCS can also be 8b or 16b CIELAB (L*a*b*) with D50 white point, which is almost 1:1 with CIEXYZ but with different nonlinear encoding.

PCS includes standard colorimetry and measurement methods

"So, in summary, the PCS is based on XYZ (or CIELAB) determined for a specific observer (CIE Standard 1931 Colorimetric Observer – often known colloquially as the 2 degree observer), relative to a specific illuminant (D50 – a chromatic adaptation transform is used if necessary), and measured with a specified measurement geometry (0°/45° or 45°/0°), for reflecting media. Measurement procedures are also defined for transmitting media."

Table 14 — Profile classes

Profile Class	Signature	Hex Encoding	
Input Device profile	'scnr'	73636E72h	
Display Device profile	'mntr'	6D6E7472h	
Output Device profile	'prtr'	70727472h	
DeviceLink profile	'link'	6C696E6Bh	
ColorSpace Conversion profile	'spac'	73706163h	
Abstract profile	'abst'	61627374h	
Named colour profile	'nmcl'	6E6D636Ch	

Profile classes and color types

No camera class!

Table 15 — Data colour spaces

Colour Space	Signature	Hex Encoding
XYZData	'XYZ '	58595A20h
labData	'Lab '	4C616220h
luvData	'Luv '	4C757620h
YCbCrData	'YCbr'	59436272h
YxyData	'Yxy'	59787920h
rgbData	'RGB '	52474220h
grayData	'GRAY'	47524159h
hsvData	'HSV '	48535620h

Looking at data block tells you a lot

What does it all mean?

10.10 lutAtoBType

10.10.1 General

This structure represents a colour transform. The type contains up to five processing elements which are stored in the AtoBTag tag in the following order: a set of one dimensional curves, a 3 by 3 matrix with offset terms, a set of one dimensional curves, a multidimensional lookup table, and a set of one dimensional output curves. Data are processed using these elements via the following sequence:

 $("A" curves) \Rightarrow (multidimensional lookup table - CLUT) \Rightarrow ("M" curves) \Rightarrow (matrix) \Rightarrow ("B" curves).$

NOTE 1 The processing elements are not in this order in the tag to allow for simplified reading and writing of profiles.

It is possible to use any or all of these processing elements. At least one processing element must be included. Only the following combinations are allowed:

B <u>M - Matrix - B</u> A - CLUT - B A - CLUT - M - Matrix - B

Other combinations may be achieved by setting processing element values to identity transforms. The domain and range of the A and B curves and CLUT is defined to consist of all real numbers between 0,0 and 1,0 inclusive. The first entry is located at 0.0, the last entry at 1.0, and intermediate entries are uniformly spaced.

A2B0 multi-function tables: curves and CLUT

sig = A2B0 ninputs = 3 noutputs = 3 nCLUTgridpoints = 16 inputentries = 256 outputentries = 4096

A2B and B2A tags

Table 21 — Profile type/profile tag and defined rendering intents

Profile Class	AToB0Tag	AToB1Tag	AToB2Tag	TRC/matrix & GrayTRC	BToA0Tag	BToA1Tag	BToA2Tag
Input	Device to PCS: perceptual	Device to PCS: colorimetric	Device to PCS: saturation	colorimetric	PCS to Device: perceptual	PCS to Device: colorimetric	PCS to Device: saturation
Display	Device to PCS: perceptual	Device to PCS: colorimetric	Device to PCS: saturation	colorimetric	PCS to Device: perceptual	PCS to Device: colorimetric	PCS to Device: saturation
Output	Device to PCS: perceptual	Device to PCS: colorimetric	Device to PCS:: saturation	undefined	PCS to Device: perceptual	PCS to Device: colorimetric	PCS to Device: saturation
ColorSpace	ColorSpace to PCS: perceptual	ColorSpace to PCS: colorimetric	ColorSpace to PCS: saturation	undefined	PCS to ColorSpace: perceptual	PCS to ColorSpace: colorimetric	PCS to ColorSpace: saturation
Abstract	PCS to PCS	undefined	undefined	undefined	undefined	undefined	undefined
DeviceLink	Device1 to Device2 rendering intent defined according to Table 19	undefined	undefined	undefined	undefined	undefined	undefined
Named Colour	undefined	undefined	undefined	undefined	undefined	undefined	undefined

Optical CAD programs make spot diagrams like these by ray tracing

http://www.mso.anu.edu.au/gsaoi/documentation/sdns/sdn02.07.htm

Ray tracing a plano optic

- A flat filter, a 'plano' optic, or two, is usually in the path between lens and sensor. What does it do to an otherwise ideal "stigmatic" optical system?
- Trace rays numerically. Send a bunch of rays toward a focal point, but recompute their paths where they enter (and leave?) the plane glass layer.

Converging rays, refracted at one plane glass surface

Close-up showing spherical, coma, and curvature of field

Ray trace of converging rays through one plane glass surface

Ray tracing is very easy, for easy problems

```
% ray trace converging rays through a plane glass plate
fnumber = 2.8;
nrays = 21;
refindex = 1.52; % typical (BK7) refractive index
mmglass = 1.50; % glass thickness to model
exitpupildist = 80; %% mm from focal plane
x1 = mmglass/refindex; % mm of air displaced by glass
figure(1); hold off
plot(x1,0, 'ko'); hold on
marginangle = atan(1/(2*fnumber));
for chiefray = atan([0, 18]/exitpupildist); % radians, at edge of 36mm field
  chiefray
  if chiefray == 0
   color1 = 'c';
   color2 = 'q';
  else
    color1 = 'm';
   color2 = 'r';
  end
  angles = chiefray - marginangle + 2*marginangle*(0:(nrays-1))'/(nrays-1);
  for i = 1:length(angles)
    angle = angles(i);
    % project rays back from 0,1 through thickness 1 to x=0 plane
    y = 0 + x1 + tan(angle);
    plot([0 x1], [y, 0], color1);
   % find refracted angle
                                                    * Snell's law here
   ref = asin(sin(angle)/refindex);
    % extend it right by 2*x1 and plot it again
    xref = 2*x1;
   yref = y - xref*tan(ref);
   plot([0 xref], [y, yref], color2);
  end
end
plot(x1*refindex,0,'ko'); hold off
title('Ray trace of converging rays through one plane glass surface')
```

It gets a little harder outside the plane of the optical axis, like for astigmatism

FtG. 22.

Diffraction Simulation

- Sum complex waves from many source or aperture points to every point where you care about the result
- Take the absolute value to get light intensity
- Points you care about can be anywhere, not necessarily in a focal plane

Slit with no focus (1D source array, equal phase across slit, 2D problem; showing real part, not magnitude)

Absolute value of complex wave to show intensity

Diffraction-limited spot

- Model the wavefront as a discrete set of sources distributed across the aperture (exit pupil), phased to have equal phases at a point in the focal plane.
- Or use points on a spherical cap, all of identical phase.
- Generate points in focal plane, defocused plane, or a cut the other way

The real deal: 2D array of sources, phased to converge; 2D slice of 3D result space; Airy null spacing in focal plane is N*lambda

(in case you couldn't see it, here it is brighter) These patterns can then be reduced to MTF curves, filters, etc. to simulate optical systems

