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Abstract!

Techniques to recreate sounds from perceptual displays known as
cochleagrams and correlograms are developed using a convex
projection framework. Prior work on cochlear-model inversion is
extended to account for rectification and gain adaptation. A prior
technique for phase recovery in spectrogram inversion is com-
bined with the synchronized overlap-and-add technique of speech
rate modification, and is applied to inverting the short-time auto-
correlation function representation in the auditory correlogram.
Improved methods of initial phase estimation are explored. A
range of computational cost options, with and without iteration,
produce a range of quality levels from fair to near perfect.

1-INTRODUCTION

Our long term interest in auditory models and perceptual displays
[2] is motivated by the problem of sound understanding, espe-
cially the separation of speech from noisy backgrounds and inter-
fering speakers. We wuse the correlogram and related
representations as pattern spaces within which sounds can be
“understood” and “separated” [3][4]. We are therefore interested
in resynthesizing sounds from these representations as a way to
test and evaluate sound separation algorithms, or even as a way to
apply sound separation to problems such as speech enhancement.
The conversion of sound to a correlogram involves the intermedi-
ate representation of a cochleagram, as shown in Figure 1, so we
address cochlear-model inversion as a separate piece of the over-
all problem.

Why pursue an auditory approach to sound separation? Adap-
tive linear techniques for sound separation and enhancement, such
as comb filters and microphone arrays, have met with only limited
success. It is our hypothesis that the human brain uses cues
extracted by nonlinear processing stages of the auditory system to
group sounds. Models based on nonlinear auditory processes thus
have the potential to do better separation than is possible with lin-
ear operations on sound waveforms. A primary cue, particularly

1. Daniel Naar is now at Mainstream Control, Santa
Clara, CA 95056. The first implementation of many of
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relevant to speech, is common periodicity across frequencies,
which is made explicit by the correlogram. Other cues, such as
common onsets and common motion, are available with further
processing. A number of labs have described the use of these tech-
niques to identify portions of a sound that come from the same
source.

The inversion techniques described here are important
because they allow us to readily evaluate the results of sound sep-
aration models that “zero out” unwanted signal portions in the
correlogram domain. Our work extends the convex projection
approach of Yang [5] by considering a different cochlear model,
and by including the correlogram inversion. The convex projec-
tion approach is well suited to “filling in” missing information.

We explore a number of reconstruction options. Some are fast
and thus could operate in real-time, while other techniques use
time-consuming iterations to produce reconstructions perceptu-
ally equivalent to the original sound. Fast versions of these algo-
rithms could allow us to separate a speaker’s voice from the
background noise in real time.

2 - BACKGROUND

Figure 2 shows a block diagram of the cochlear model [6] that we
use in our work. The basis of the model is a bank of filters, imple-
mented as a cascade of low-pass filters, that splits the input signal
into spectral bands. The output from each filter in the bank is
called a channel. The energy in each channel is detected and used
to adjust the channel gain, implementing a simple model of audi-
tory sensitivity adaptation, or automatic gain control (AGC). The
half-wave detection nonlinearity provides a waveform for each
channel that roughly represents the instantaneous neural firing
rate at each position along the cochlea.

The correlogram further refines the information coming out of
the cochlear channels by summarizing the periodicities in the sig-
nal using short-time autocorrelation functions. We believe that
this periodicity information is an important intermediate represen-
tation in human auditory processing, and is key to understanding
pitch perception, auditory scene analysis, and our ability to under-
stand sound in a noisy environment.
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Figure 1. Three stages in low-level auditory perception are shown here. Sound waves are converted into a detailed representation
with broad spectral bands, known as cochleagrams. The correlogram then summarizes the periodicities in the cochleagram with
short-time autocorrelation. The result is a perceptual movie synchronized to the acoustic signal. Two inversion problems addressed

in this work are indicated with arrows from right to left.
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Figure 2. Three stages of the simple cochlear model used in
this paper are shown above.

Many of the steps described in this paper are based on convex
projections. Consider a band-limited signal with known positive
values, the negative values lost due to a half-wave rectifier
(HWR). The original waveform is a member of two convex sets:
the bandlimited signals, and the set of signals with the given posi-
tive values. By projecting a signal estimate onto each set in turn, a
signal can be found that satisfies both constraints. If the constraints
are tight enough, then the desired signal will be the only one found
[7].

This paper describes the inversion process in the two stages
shown in Figure 1, from a cochleagram to a waveform, and then
from a correlogram to a cochleagram. There is no information lost
in the filter bank or the AGC, so in principle these stages can be
directly inverted. The detection stage in our work is a HWR,
which drops the negative portions of the waveform. This informa-
tion must be reconstructed from what is known about each chan-
nel’s signal: it is band-limited, the positive values are known, and
the combination of all channels must produce a consistent wave-
form. These inversion steps are described in Section 3.

Both correlogram inversion and spectrogram inversion share
the same problem, recovering the phase that has been lost. Section
4 describes the inversion process for both representations. The
entire process is summarized in Section 5. Other cochlear models
and other approaches to computing correlogram-like representa-
tions are amenable to the inversion techniques described.

3 - COCHLEAGRAM INVERSION
The cochlear output is inverted by undoing the AGC, finding the
missing portions of the waveform that were removed by the detec-
tor, and combining the channels of the filter bank to create a wave-
form that will generate the same cochleagram.

The filter bank stage of the cochlear model is easily inverted
with known techniques based on analysis-resynthesis filter banks.
In particular, it is inverted by running each cochlear channel back
through the original filter bank, but with time-reversed impulse
responses, and summing the result. Any remaining spectral tilt can
be fixed with a simple filter. A less expensive way to correct the
gross features in the spectral tilt is to weight each channel by a
fixed gain. The gain due to passing through each channel filter
twice can be written as a matrix, G , with terms that are a function
of the channel number and a number of discrete frequencies. The
over-determined matrix equation G * w = I, where w is a col-
umn vector of channel weights, and I is a column vector of
desired gains (usually unity) at each discrete frequency, is then
solved in a least-squares sense. All results in this paper correct for
spectral tilt by weighting each channel in this manner.

In our cochlear model, inner hair cells are modeled as a simple
half-wave rectifier. When the negative portions of the waveform
have been thrown away, can the information be recovered from
what is known about each cochlear channel? We know the positive
portions of the waveform and know that each channel has limited
spectral content and no DC response. This information can be used
to find a complete waveform. By projecting onto convex sets, in
this case specified in the time and frequency domains, a waveform
is found that approximates the original filter bank output.
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Figure 3. This figure shows convex projections (dark
boxes) being used to recover the information lost in the
detection stage: a) is the conventional approach, b) has the
spectral projection folded into the filter bank inversion.

The structure of the inversion using convex projections to
directly invert the cochlear detector (HWR) is shown in Figure 3a.
Alternately, the spectral projection can be implemented using the
cochlear filter bank itself. We have taken this a step further by
combining the information from all channels after performing
each iteration. This is shown in Figure 3b. The temporal projection
is realized by filtering the estimated cochlear reconstruction with
the filter bank, and combining the known positive values with the
newly estimated negative values.

The reconstructions in this paper are generated using the pro-
jections shown in Figure 3b. Due to the fact that the HWR cuts the
energy in the signal by approximately two, the HWR inversion
converges much more quickly if the detected signals are scaled by
a factor of two before the first spectral projection.

Finally, the AGC is implemented as a multiplicative gain.
Each gain is set based on the recent history of the nearby channels
and the AGC is inverted by dividing by the computed gain. Since
the AGC gains are calculated by feedback from the cochleagram
output, the gain can be exactly reconstructed from the cochle-
agram. This is not to imply that there are not numerical errors.
With very large signals, the AGC state is pushed close to one and
the gain hovers near zero. Small amounts of noise sent back
through the AGC state estimator translate into large changes in
gain when the AGC is inverted.

Figure 4 shows cochleagram inversions for an impulse and the
syllable “tap.”2 This figure shows reconstructions, first with no
iterations and then with 10 iterations to recover the lost HWR
information. The reconstruction of “tap” with AGC inversion is
indistinguishable from the original. The compressed “tap” has
stronger onsets compared to the original.

4 — CORRELOGRAM INVERSION
An important part of correlogram inversion is the algorithm to
recover the phase from the short-time autocorrelation functions of
the cochleagram channels. Normally when computing a spectro-
gram, only the magnitude is retained and the phase information is
thrown away. A line of the correlogram is the short-time autocorre-

2. The syllable “tap”, samples 14000 through 17000 of
the “train/dr5/fcdf1/sx106/sx106.adc” utterance on the
TIMIT Speech Database, is used in all voiced examples
in this paper.
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Figure 4. Cochleagram inversions of an impulse and the
word “tap.” The top graphs show the impulse response
with and without any iterations. The remaining error is
caused by the limited bandwidth of the cochlear filter bank.
The bottom graphs show the iterated cochleagram inver-
sion, with and without the AGC inversion. The later is a
good way to see the perceptual effect of the AGC.

lation function of a channel of the cochleagram, or the Fourier
transform of the power spectrum. The work described here is an
extension of the work described by Griffin and Lim [8]. Their basic
algorithm inverts a magnitude-only spectrogram using convex pro-
jection to arrive at a set of phase estimates that produce a consistent
time domain signal.

Three changes are described here that significantly improve the
performance of this algorithm. First, it is important to compute the
spectrogram in a way that minimizes the phase. Second, a weighted
correlation can be used to find an initial estimate of the phase for
each window of data. Finally, knowledge about a correlogram can
be used to further refine the estimate.

The performance of these algorithms is described by measuring
the errors in the frequency domain, even though perceived quality
does not always correlate with this measure [9]. The spectrogram
inversion process does not guarantee that the reconstructed wave-
form will match the original waveform, only that the spectral error
is reduced at each step.

4.1. Minimizing Spectrogram Phase (FFTShift)

The way that data is loaded into an array and windowed before
computing the FFT significantly affects the phase of the result and
thus the performance of the inversion algorithm. A time domain
window is often used to minimize discontinuities in the data. The
position of the data and this window affects the phase of the result-
ing spectrogram.

Data can be loaded into an array for input to an FFT algorithm
in one of two ways. A simple way to load the array puts the data in
order into the array and centers the window in the array. This is
shown in Figure 5a. This puts the majority of the energy in the sig-
nal in the center of the array and thus the phase of the i’th frequency
bin is centered around .

Figure 5b shows the time-domain data shifted so that the center
of the window is at the start of the array. Now the data is lined up in
“cosine” phase and the phase of each spectral bin will tend to fall
near 0. We call this the FFTShift approach.

The table below shows the spectral error with and without FFT-
Shift. The error is calculated using a 300Hz carrier modulated with
a 60 Hz sinusoid.
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Figure 5. Two ways to load data into an FFT. Faster recon-
structions are possible with the approach shown in (b).

4.2, Predicting Spectrogram Phase (Rotation)

In the approach described by Griffin and Lim [8], there is no
information about the phase. Assigning zero to each phase is as
good a guess as any other. (Of course, as shown above with the
FFTShift, this might not always be the best assumption.) But
often there is significant overlap between the windows of data.
Once one window’s data is inverted, then we should choose the
phase for the second window so that it is consistent with the first.

The first optimization is motivated by the “synchronized over-
lap-add” procedure of Roucos and Wilgus [9]. We believe this is
the first time this has been applied to spectrogram inversion. Their
procedure, originally applied to time-scale modification, uses
cross-correlation to find the optimum time delay to overlap and
add a new window of data to that part of the waveform that has
already been calculated.

A simple way to properly align each new window is to add a
linear phase delay to the spectral data to insure the best possible
correlation between the existing data and the new data. The new
window of data is rotated within the FFT window looking for the
best match with the partial reconstruction.

Data from multiple windows are combined into a recon-
structed waveform using a least-squares approach as described by
Griffin and Lim. This involves weighting each sample of data by
the window used to create the initial spectrum or

)

where y is the IFFT of the spectrogram computed with window w,
at intervals of m samples. The rotation is done before weighting
the data and doing the overlap-and-add. In the equation above, y is
changed to the rotated output from the IFFT algorithm.

The next table shows the spectral error using three different
algorithms for aligning the phases. The rows with zero initial
phase mean that each window of data is independently inverted
starting from zero phase. FullRotate means that the new data is
circularly correlated with the existing data and no weighting is
applied to the result before picking the correlation peak. Weight-
edRotate means that the correlation function is weighted so that
correlations close to zero shift are more likely to be chosen.

This table shows the percent spectral error as a function of
input type (either the word “tap,” or a cosine carrier modulated
with a lower freqency cosine), the initial phase algorithm, and the
initial error and error after 10 iterations. In all cases a 256-point
window is moved 64 points per frame (16kHz sampling rate.)

_ iy V(2 \
x(n) = \zy(ms,L)w(mS—n)}/\zw (mS - n)

Signal Initial Phase Start  End
300/60 Zero 37% 1.6%
FullRotate 29%  3.8%
WeightedRotate 9%  3.8%

“Tap” Zero 45% 6.3%
FullRotate 28% 5.6%
WeightedRotate 9%  3.1%

In general, the results show mixed response when comparing
zero phase versus weighted rotation for the modulated sinusoids.
When a voice is used, the results are clear cut. In most cases the
weighted cross-correlation-rotation scheme reduces the error by
as much as a factor of 10.
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Figure 6. The spectral error is shown here for three differ-
ent estimates for the initial phase of each window of data.
Although the rotated result had higher spectral error in
this case, the resulting waveform sound more lifelike then
the other results.

Now that we have improved spectrogram inversion techniques,
we move to apply these techniques to the correlogram inversion
problem.

4.3 — Correlogram Extensions

The correlogram is inverted by observing that the autocorrelation of
a window of data contains the same information as a power spec-
trum. Thus a series of autocorrelations, for any one channel, is
exactly equivalent to a spectrogram of the channel. A spectrogram
is inverted, if the windows of data overlap, by recovering the phase
in the original Fourier spectrum as discussed in the previous sec-
tion.

We can invert each channel of the correlogram independently.
The result is a series of time waveforms, one for each channel, that
represent an estimate of the cochleagram. Two additional bits of
information are used to reduce the computations needed for recov-
ering the phase information. In both cases the idea is to generate a
better estimate of the phase so that fewer iterations are needed to
recover the original phase.

The first optimization is based on the structure of a cochlear fil-
ter bank. There is significant spectral overlap in the channels of a
cochlear model. Once we recover the phase in one channel, this
provides a good estimate of the phase for all frames of data in an
adjacent channel. The second optimization uses the fact that the
output of the cochlear energy detectors is always positive. The error
at each iteration step is reduced by setting the negative values to
Zero.

Figure 6 shows the spectral error, as a function of channel num-
ber, with a number of different correlogram reconstruction tech-
niques. The different lines show the spectral error assuming zero
initial phase (zero), rotating each window of data before adding to
the partial reconstruction (rotated), and copying the phase from the
previous channel (phase). The results before and after iterating 10
times are shown.

5 - CONCLUSIONS

This paper has described techniques to estimate a waveform that
generates a given correlogram. By converting each row of the cor-
relation into a short-time power spectrum, the spectrogram inver-
sion techniques described in Section 4 are used to estimate the
output of each cochlear channel. The techniques described in Sec-
tion 4.3 take into account the special properties of a correlogram to
improve the initial phase estimates and reduce the number of itera-
tions needed to get a good estimate of the cochlear output.

Given a cochleagram, or an estimate of the cochleagram from a
correlogram inversion, an estimate of the original waveform is
found by inverting the adaptation mechanism, recovering the infor-
mation lost in detection, and then backing out the filter bank. The
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Figure 7. Complete reconstruction, with and without cor-

relogram and cochleagram iterations, of an impulse train
and the word ‘tap.’

result is a waveform that could have generated the initial cochle-
agram or correlogram. Figure 7 shows reconstructions from cor-
relograms of an impulse and the syllable “tap.” While the
waveforms don’t look perfect, most of the error is in the phase
and the reconstructions sound very good in all cases.

For an even better reconstruction, an outer projection itera-
tion loop can be executed, computing the cochleagram and com-
plex spectrogram of the reconstruction and using its phase
information to improve the next reconstruction. Doing this on the
impulse train shown in Figure 7 does reduce the spectral error to
very near zero, but does not change the waveform or the percep-
tual error much.
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