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1.1 MODELS OF COCHLEAR WAVE PROPAGATION 

Wave propagation in the cochlea can be modeled at various levels and for vari
ous purposes. We are interested in making models of cochlear signal processing, 
in analog or digital VLSI or in software, suitable for supporting improved hear
ing aids, speech-recognition systems, and other engineered hearing machines. 
We are also interested in developing models that can contribute to a deeper un
derstanding of how hearing works. Hence, a neuromorphic approach, in which 
the functionality of the model emerges from a form that is loosely copied from 
the nervous system, is appropriate. 

The filter-cascade approach to modeling the cochlea is based on the obser
vation that small segments of the cochlea act as local filters on waves propa
gating through them. Thus, a cascade of filters can emulate the whole complex 
distributed hydrodynamic system. This modeling approach can include com
pressive and adaptive aspects of the peripheral auditory nervous system as 
well, using analogs of cochlear nonlinear distortion and efferent feedback. We 
summarize the underpinnings, advantages, and limitations of this approach in 
this paper, so that readers can more readily understand other papers on filter
cascade approaches and implementations. 

Figure 1.1 shows the filter-cascade structure that we discuss in this paper. 

1.2 COCHLEAR HYDRODYNAMICS IN THE LIOUVILLE-GREEN 
APPOXIMATION 

Imagine the cochlea as a three-dimensional (3D) hydrodynamic system with 
a linear or one-dimensional (1D) array of sensors attached to it. In the real 
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Figure 1.1 A Filter Cascade. This simple structure of cascaded filter stages is a useful 
analog to the hydrodynamic wave propagation system of the cochlea. 

cochlea, the 3D and lD structures follow a complicated helical path, with the 
sensors being the inner hair cells (IHCs) of the organ of Corti. Abstractly, 
we refer to the one dimension that indexes the sensors as the cochlear place 
dimension. From a functional point of view, we care about the response only 
as a function of the input signal and of the lD place, so there is only one 
relevant spatial dimension at the model output. 

Wave propagation in the cochlea depends on fluid displacement in three di
mensions, on membrane bending and stretching, and on related 2D and 3D and 
micromechanical effects within the organ of Corti, which have mostly unknown 
physical parameters. There have been many arguments in the cochlea-modeling 
business about whether lD, 2D, or 3D models are good enough to capture the 
essence of the physics. Independent of these arguments, if the results of the 
model are needed at only a sequence of places along one dimension (such as 
at the inner-hair-cell locations), then we can represent the results of the 2D 
or 3D hydrodynamics by a lD model system, and can do so by using transfer 
functions, more economically than by modeling the fluid motion directly. 

One key property of cochlear physics on which we must rely for this approach 
is the unidirectionality of energy flow. Under normal conditions, sound energy 
enters the ear, propagates, and is absorbed without causing significant energy 
to reflect and propagate back out [2). This condition is the one that we shall 
model; we discuss exceptions in Section 1.9. 

The method known as Liouville-Green (LG) or Wentzel-Kramers-Brillouin 
(WKB, or WKBJ with Jeffreys) give useasy insight into wave propagation in 
nonuniform media such as the cochlea. This method says that, if a wave is 
propagating from the input along one dimension, then we can get the response 
from the input to any point by composing the relative responses from each 
point to the next along that dimension, using local parameters as though the 
medium were uniform. 

The mathematics is most easily expressed in terms of a wave description 
in which the local (i.e., at any particular place) wave-propagation properties 
are characterized by a complex wavenumber. To make life simple, we consider 
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only one frequency at a time. To simplify the analysis further, we use complex 
numbers as the values of waves, realizing that we can easily constrain wave 
values to real numbers later by adding pairs of complex waves in a complex
conjugate relationship. 

In a uniform medium, a wave propagating toward increasing values of the 
place dimension is given by 

W(x) = Aexp(iwt- ikx) 

where A is the amplitude, w is the frequency, k is the wavenumber, t is time, 
and x is place. The wavenumber depends on frequency via the physics of the 
medium; we can write it as the function k(w)-the solution of the physical 
constraints known as the eikonal or the dispersion relation of the system. 

We can think of the wavenumber as the spatial frequency of the wave, in 
radians per meter in MKS units. If k is real, then the wave described simply 
progagates with no change in amplitude; with a wavelength of 21r /k, at a veloc
ity w/k. If k has a nonzero imaginary component, however, then the wave can 
decay in amplitude as it propagates (i.e., in a passive or attenuating medium, for 
a negative imaginary part) or increase as it propagates (i.e., an active amplify
ing medium, for a positive imaginary part). Zweig and colleagues [29] presented 
an analysis of the lD long-wave approximation to the cochlea with resonant 
basilar membrane (BM), using the complex radian wavelength .A (lambda-bar, 
the reciprocal of the wavenumber). 

By examining the ratio of waves at two places separated by a distance .6.x, 
we see that the wave at the farther place is equal to the wave at the nearer place 
multiplied by exp( -ik.6.x), representing a frequency-dependent filter character
izing the stretch of length .6.x. 

In a nonuniform medium, there is no single wavenumber for a frequency, and 
possibly certain regions amplify a particular frequency while others attentuate 
it. Under reasonable conditions, however, each point in such a medium (i.e., 
along the place dimension) can be characterized by a local wavenumber, as 
though it were part of a uniform medium. The LG approximation then says 
that a wave propagating an infinitesimal distance dx through that place will be 
multiplied by exp( -ikdx) (and possibly also by a real-valued factor near 1, if a 
constant amplitude does not correspond to a constant power as the parameters 
of the medium change-but let's neglect that factor for now) . 

Now consider wavenumber as a function of both frequency and place: k(w, x). 
Within the approximation of the LG method, this function completely char
acterizes wave propagation in the nonuniform medium along the x dimension. 
To see what happens between points far apart, we can break the medium into 
infinitesimal segments of length dx, and can multiply together all the factors for 
those segments. The factors are exponentials, and the product of exponentials 
is the exponential of a sum, so the resulting product is the exponential of an 
integral along the· x dimension: 
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1Zb 

H = exp( -i kdx) 
z .. 

This complicated-looking frequency-dependent gain and phase factor H is 
the LG method's representation of the transfer function between points Xa 
and Xb in a nonuniform medium; it is a generalization of the transfer function 
exp( -ik6.x) that characterizes a stretch of a uniform medium. 

The factor H is still just a linear filter in the usual signal-processing sense. 
Furthermore, we can factor this filter into a. product, or cascade, of several filters 
by splitting the interval of integration (from Xa to xb) into N small steps: 

N {Zj 
H =II exp(-i }, k(w, x)dx) 

j=l Zj-1 

Any number and size of steps leads to a factorization, but, if the steps are 
small enough, then each individual filter will be well approximated from a local 
wavenumber by exp(-ik6.x), where 6.x = (xb-Xa)/N is the step size, making 
it easier to tie the filters directly to a model of the underlying wave mechanics: 

N 

H ~II exp(-ik(w,xj)6.x) 
j=l 

Therefore, independent of the details and dimensionality of the underlying 
wave mechanics, the responses of the cochlea at a sequence of places are equiv
alent to the responses at the outputs of a sequence of cascaded filters. The 
LG method constrains the design of those filters when the underlying physics 
is known, 

How does the filter relate to the wavenumber? For a given value of 6.x 
in a uniform medium, the filter and the wavenumber are in 1-to-1 correspon
dence via the complex exponential. For a given pair of places Xa and Xb in a 
nonuniform medium, the filter is determined uniquely by the function k(w, x), 
although the inverse is not necessarily true (i. e., a different k(w, x) with the 
same integral on that interval, such as a spatial reversal of k(w, x), also would 
be a solution). 

Even for nonlinear and time-varying wave mechanics, we can reasonably as
sume that a nonlinear and time-varying filter cascade will be a useful structural 
analog and a fruitful modeling approach: that of modeling local behavior with 
local circuits. The approach is neuromorphic in the sense that it is based on the 
form of wave propagation present in this peripheral part of the sensory nervous 
system. 

If the cochlea's frequency-to-place map is approximately logarithmic, and we 
model equal place increments with filter stages, then the model stages will have 
characteristic frequencies (or time constants) in nearly a geometric sequence. 
We often assume a geometric sequence in model calculations, but the method 
is more flexible and can be used to match realistic cochlear maps in which the 
low-frequency region maps nearly linearly to place. 
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1.3 POWER FLOW AND ACTIVE GAIN 

The LG method goes one step further than we just described in providing 
techniques to compute a slowly space-varying amplitude factor to account for 
the varying relationship between wave amplitude and power in a system with 
nonuniform energy-storage mechanisms. For example, if BM stiffness is vary
ing, the proportionality between squared volume displacement and potential 
energy is changing; the amplitude of a BM displacement wave needs to be ad
justed accordingly. For our purposes, we shall typically jump up one level of 
abstraction by imagining that our wave amplitudes are given in terms of de
rived variables, such that constant amplitude corresponds to constant power. 
Therefore, the gain ofthe filters will be exactly 1 in regions that are passive and 
lossless, as is typical of extremely low frequencies, relative to the characteristic 
frequency ( CF) of the cochlear place under consideration. 

For more specific information on hydrodynamic modeling and the LG 
method, relative to analog VLSI implementations and numerical methods, see 
the dissertation of Lloyd Watts [26]. 

We have not yet said how the filters in a cascade should look-we have said 
only that the design can be constrained by models at a lower level. We discuss 
specific filters in Section 1.5. In general, we expect cochlear filters to be passive 
and linear for low frequencies, to provide active gain or power amplification for 
frequencies near CF, and to attentuate high frequencies. Therefore, filters of 
the class ofinterest have unity gain at DC, followed by a gain somewhat greater 
than unity, and a high-frequency gain less then unity . 

If the model has many such filters in cascade, then the individual filter stages 
do not need to have gains far from unity for the cascade to achieve an aggregate 
pseudoresonant [5] response, with a high peak gain and a large high-frequency 
attenuation. 

The notion of a pseudoresonance differs in a fundamental way from that of 
a resonance, with which engineers generally are familiar. A pseudoresonance is 
a broadly tuned gain bump that results from the collective behavior of a large 
number of broadly tuned (and hence low-precision) stages (or poles), or of a 
distributed system. A resonance, on the other hand, becomes narrowly tuned 
and needs high precision to achieve a high gain at its center. Reliance on such 
a collective computation is another hallmark of the neuromorphic approach. 

1.4 WIDE-DYNAMIC-RANGE COMPRESSION VIA FILTER 
CASCADES 

One of the most important nonlinear functions of the cochlea is the compres
sion of a wide range of sound intensities into a narrower range of cochlear
motion intensities at the sensor array, for frequencies near CF. Studies of 
cochlear mechanical response since about 1970 [19] have repeatedly demon
strated this frequency-dependent compression in live cochleae, and its absence 
in dead cochleae. 



8 1\TEUROMORPHIC SYSTEMS ENGINEERING 

In live cochleae, the overall input-output intensity curves for frequencies near 
CF have a slope of typically 0.25 to 0.5 on a log-log plot [20]. This reduced slope 
is known as a compressive nonlinearity. The exact slope depends on the quality 
of the experimental preparation, on the frequency and intensity range, and on 
whether the response is measured at a fixed frequency or at the frequency of 
greatest response, which shifts a little with level. A higher compression (slope 
0.25, or 4-to-1 compression) is more typical at a fixed frequency at or above the 
most sensitive frequency (CF), and a lower compression (slope 0.5, or 2-to-1 
compression) is more typical at the peak response frequency, as the peak moves 
to frequencies below CF at higher sound levels. 

From our filtering point of view, we need level-dependent filters whose gains 
decrease as the signal level increases, to model this mechanical compression. 
Equivalently, we expect that the imaginary part of the wave number will change 
with level, even changing its sign between damping and amplification for some 
combinations of frequency and place. 

Presumably, the dependence of wavenumber on level comes from nonlineari
ties in the biomechanics, including the outer hair cells, which are the presumed 
source of the energy needed to provide active gain. These mechanical changes 
modify the way that traveling waves pick up energy, and the resulting cascaded 
filters that model a set of different places are a reflection of the underlying wave 
mechanics. Therefore, a filter-cascade model can, in principle, exhibit a range 
of behaviors similar to those of the mechanical system. 

As a wave picks up energy in traveling across a range of places, each little 
increment of place needs to contribute only a small amount of gain. If the 
filter-cascade model has stages that model small ~x regions, then each filter 
will need to contribute only a small gain; as the overall gain changes, each filter 
will have to change only slightly. 

A power gain, or a filter gain greater than unity, is correlated in this view 
with an active process that we think of as providing an active undamping
effectively a negative viscosity. But even if we do not rely on this notion of a 
literal power gain, the variable-gain filter-cascade· structure provides a qualita
tive functional model of the variable-gain behavior observed in the cochlea-it 
could be adapted to fit the wave mechanics of a passive model. Indeed, the ba
sis for our first use of the filter-cascade technique [11] was a passive long-wave 
analysis [29]. 

In our earlier model [11], we added the gain variation after the filters as 
a functional afterthought, so the model did not have the right frequency
dependent properties, such as linearity at low frequencies. Because it incor
porates gain variation directly into the cascade as filter-parameter ( Q) varia
tion, the filter-cascade approach inherently achieves a reasonable constraint on 
how the overall filter gain can vary with frequency and place: The differ~nt 
places share most of the same cascade filters. That is, it is not possible to have 
a high peak gain at one place and a low peak gain at a nearby place, even 
if the cascaded filters vary substantially, because the composite responses at 
nearby places share most of the same filters. This property arises because we 
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are modeling a wave propagation directly, again illustrating the benefit of a 
neuromorphic approach. 

1.5 FITTING A FILTER CASCADE TO THE COCHLEA 

For most models of the mechanics of cochlear wave propagation, the qualita
tive behavior of a stage is just this: the filtering provides a gain bump for 
frequencies "near" CF, and provides attenuation at higher frequencies. What 
are the simplest lumped-parameter filters (i.e., small sets of poles and zeros in 
Laplace or Z-transform spaces) that can model this qualitative behavior? How 
significantly do the details of the stage filter affect the overall pseudoresonant 
response of the cascade? We answer these questions using examples. 

The simplest stage is a two-pole filter, which we refer to as a second-order 
section (808). The SOS as commonly used in digital signal processing might 
have either just two poles and no zeros in the simplest case, or might include 1 
or 2 zeros in a higher-complexity alternative. We have focused on the simpler 
all-pole version in recent years [27, 18], whereas our earlier work used both 
poles and zeros [15, 11, 12, 16, 23]. 

An active-undamping approach to a physical basis for a wavenumber solu
tion [18]led us to believe that simple two-pole filters may be not sharp enough 
(have narrow enough relative bandwidth) to be realistic, and that a three-pole 
filter would be a closer match. But two poles and two zeros can accomplish 
the same sharpening if that is what we need to fit experimental or theoretical 
data. In spite of this sharpness discrepancy relative to our particular mechan
ical model, we see the two-pole filter as a good and useful model of cochlear 
function. We should not rule out this simplest approach without a compelling 
reason. 

Figure 1.2 shows a composite pole-zero diagram representing four alternative 
designs for a single filter stage: two-pole, three-pole, two-pole/two-zero, and a 
sharper two-pole/two-zero designs. The corresponding stage transfer-function 
gains and group delays are shown in Figures 1.3 and 1.4, respectively. The 
two-pole/two-zero designs have sharper.drops just beyond CF than the all-pole 
designs, but then level out at some gain less than 1, rather than continuing to 
drop. 

Figure 1.5 shows the composite gains of long cascades of geometrically spaced 
stages, and Figure 1.6 shows the corresponding total group delays. Note that 
we can sharpen the two-pole response by adding either an extra pole or a pair 
of zeros; the resulting cascade gains can be made similar, but adding poles 
adds to the delay, whereas adding zeros reduces the delay. This dimension of 
flexibility may be useful if we wish to match the model to a delay or phase 
measurement. 

Moving the zeros closer to the poles. and closer to the imaginary axis in the s 
plane results in more sharpening, especially of the high side, of the overall filter. 
This configuration fits the notch transfer function of a long-wave mechanical 
approximation, and was the basis of our original cochlea model [11]. We now 
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Figure 1.2 Composite pole-zero diagram. Four different filter designs are specified within 
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Figure 1.3 Stage transfer-functions gains. For each of the four filter designs of Figure 1.2, 
the magnitude of the stage transfer function is plotted. 

believe that that model was too sharp, due to the unsuitability of the long
wave approximation for modeling the real cochlea near CF. At the time, we 
used too-sharp filter models by trying to match transfer functions to iso-rate 
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Figure 1.4 Stage group delays. For each of the four filter designs, the group delay of the 

filter stage is plotted in arbitrary units. 

tuning curves; that approach is clearly inappropriate, as we have explained 
subsequently [13]. 

1.6 CASCADE-PARALLEL FILTERBANKS 

Our original filter model [11] was based on the longwave approximation to 
cochlear mechanics, in which a significant membrane mass leads to a true local 
resonance. We used a cascade of notch filters (two-pole/two-zero) to model 
pressure-wave propagation, plus a resonator at each tap of the cascade to con
vert pressure to BM displacement or velocity locally. This cascade-parallel 
architecture may still be a useful way to separate the propagated variable from 
the sensed variable, and possibly to simplify the required filters. For the pur
poses of that model, however, we noticed that, by constraining the parameters 
and rearranging some poles, we could easily convert the structure to a roughly 
equivalent pure cascade version, saving complexity and computation (12]. 

Figure L 7 shows the cascade-parallel structure; contrast it with Figure 1.1. 
Notice that the output taps of the cascade-parallel structure are still always 
related by a relative transfer function, such that a pure cascade equivalent 
version exists, although stability of the exactly equivalent pure cascade is not 
ensured unless the parallel filters have stable inverses. 
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1.7 NONLINEAR EFFECTS 

A filter cascade can have an overall strongly compressive nonlinear input
output behavior, if the stages are weakly compressive. There are two general 
forms of nonlinearity that are important to consider, and it is likely that both 
operate in the real cochlea: instantaneous nonlinear distortion, and feedback 
control of a peak-gain parameter. For example, the nonlinear model of Kim 
and his colleagues [8] is just a cascade of two-pole filters with a compressive 
nonlinearity in each stage; Kim's later suggestions [7] are of the parameter
feedback form, and are motivated as a functional role for the auditory efferent 
system. 

An instantaneous distortion nonlinearity, such as a hyperbolic tangent that 
puts a firm saturation limit on the amplitude out of each stage, leads to the gen
eration of intermodulation products, such as the cubic-difference tone 2/1 - f2. 
Distortion products are mostly generated where the primary components (h 
and h in this case) are large, and distortion products with frequencies below 
the primaries are then free to propagate farther to their own place. Frequencies. 
above and below the primaries can sometimes be detected propagating back out 
of a real cochlea, but unidirectional cascades cannot model that effect. 

As discussed in Section 1.4, we can use feedback of a detected output level 
to affect the filter parameters, implementing a less distorting amplitude com-
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Figure 1.6 Aggregate group delays. For each of the four filter designs, the group delay of 
the cascade is plotted in arbitrary units. 

Cascade/Parallel Structure 

Figure 1.7 The cascade-parallel structure. This cascade-parallel filter configuration can 
model the response of the cochlea with more flexibility than the pure cascade structure has. 

pression known as automatic gain control (AGC). A small reduction in the pole 
Q of each stage in response to output energy can lead to a highly compressive 
overall response. This AGC is one purported function of the auditory efferent 
innervation: to tell the outer hair cells to turn down their level of activity [7] . 
Sound in one ear is even known to drive the efferent neurons to the contralateral 
cochlea, perhaps to keep the gains of the two ears more synchronized than they 
would be otherwise, and thus to aid the brain in binaural level comparisons [1 J. 



14 NEUROMORPHIC SYSTEMS ENGINEERING 

1.8 SILICON VERSUS COMPUTER MODELS, AND PRACTICAL 
PROBLEMS 

We would need a high-power programmable processor to implement a filter
cascade model of the cochlea in real time. Dedicated silicon implementations, 
on the other hand, can be made with less silicon and much lower power con
sumption [27, 12, 27). An important cost factor in analog or digital sampled
data implementations is that avoidance of aliasing in the nonlinear opera
tions that follow thE) cochlea model requires a substantial oversampling fac
tor. By avoiding clocks, sampling,. and high-speed circuits, the continuous
time analog approach yields by far the lowest power consumption, but requires 
novel solutions to noise, matching, tuning, stability, and communication prob
lems [3, 6, 11, 25, 24, 25, 32, 90); see also the other papers on neuromorphic 
analog cochleae in this book. 

1.9 LIMITATIONS 

As we mentioned in Section 1.7, distortion products can propagate backward 
out of a real cochlea, but not out of a unidirectional filter-cascade model. This 
limitation applies to other otoacoustic emissions as well, both stimulated and 
spontaneous. So the filter cascade is not a suitable modeling substrate for such 
effects. 

The filter-cascade model is based on looking at a set of points along only 
one dimension, and as such provides no direct help in our understanding the 
motion of other parts of the cochlea or in the cochlea's fluid. Micromechanical 
models, 2D and 3D models, and other modeling approaches can help to inform 
the design of the filter cascade, but the filter cascade then captures only a slice 
of the more detailed models. 

Any small stretch of cochlear transmission line acts approximately as the 
filter exp( -ik~x); but does this filter, or an approximation to it, have useful 
properties, such as stability or causality? The filter specification derived from 
the wavenumber tells us what happens at all sine frequencies; to address sta
bility, however, we need to consider approximate filter models with poles and 
zeros. We believe, but have not proved, that, if the mechanical wave system is 
stable, then stable rational filters exist that are reasonable approximations to 
the system's frequency response. 

Causality is more complicated, because the response at a point is not phys
ically caused by only the action at a different point upstream, even under 
the unidirectional assumption; rather, it is caused by the combined actions of 
nearby points in the whole 2D or 3D motion of the medium. The resulting 
filter, or approximations to it, could conceivably show precursors in response 
to an impulse. So, if we design a filter with the right magnitude frequency 
response, causality may force the filter to have excess delay if the ~x value 
is short compared to the wavelength. Thus, fine division of the place dimen
sion may make it increasingly difficult to get the phase right in low-order filter 
appoximations-especially in the case of causal all-pole filters. Adding zeros 
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helps us to cancel some of the delay of the poles, thus making it easier for us 
to develop a model with reasonable phase. Kates [6] has explored one class of 
filter cascades using zeros to arrive at lower overall delay. 

The LG method breaks down in the cochlea in the cutoff region, where the 
eikonal has multiple complex solutions for k. In this region, the wavenumber 
changes so rapidly that there is effectively a mode coupling phenomenon that 
allows energy to couple into several of these different wave modes, which in
terfere with each other in complex ways, and which decay more slowly with x 
than does the original mode [26]. The resulting high-frequency irregularity, or 
plateau, in the response gain, which is found in numerical 2D solutions and is 
sometimes observed in real cochleae, is not easily modeled by cascades of simple 
filters. This discrepancy is an obstacle not to the concept of a filter cascade, 
but rather to the modeling details and to the desire to use simple stages. It 
seems likely, however, that the high-frequency plateau has no functional im
portance in normal hearing. Complicated response patterns due to cochlear 
micromechanics may lead to similar considerations, depending on one's goals 
in modeling. 

1.10 RELATION TO OTHER APPROACHES 

The most common functional approach to computational models of the cochlea 
is the bandpass filterbank. In this approach, every place to be modeled has 
its own filter, which Is designed to match experimental data. Because there is 
usually no good basis for constraining a filter design using poles, an all-zero 
( transveral or finite impulse response) filter is often employed. Both of these 
features-independent filters and lack of poles-make the implementation of 
this approach computationally expensive. 

Filterbanks that use poles-such as the gammatone filterbank (GTF) and its 
all-pole variant (APGF) [14, 23]-are becoming more widely used, because of 
their efficiency and simpler parameterization. The GTF is popular, but has an 
inappropriate symmetric passband; the APGF is closely related to a cascade 
of two-pole filters, and is therefore much more realistic in terms of transfer 
function and of the possibility of parametric nonlinearity. 

An analog silicon model of the cochlea that can propagate waves bidirection
ally has been reported by Watts [27]. It uses a 2D resistive grid as a substrate 
for directly solving Laplace's equation for wave propagation in a 2D fluid model 
of the cochlea, with second-order filters along one edge modeling the BM-fluid 
interaction. This approach needs to be further developed to see whether it 
leads to an overall advantage in implementing an effective cochlea model. A 
potential problem is that irregularities or the inherent spatial discretization 
may lead to reflections that cause instability, as has sometimes been a problem 
in 2D numerical solutions of active cochlea models. 
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1.11 CONCLUSIONS 

The filter-cascade structure for an cochlea model inherits two key advantages 
from its neuromorphic roots: efficiency of implementation, and potential re
alism. Both the filter transfer functions, in terms of magnitude and delay 
dispersion, and the nonlinear behaviors of the cochlea, in terms of distortion 
and adaptation, are modeled realistically under the constraints imposed by the 
cascade. Minor problems, such as excess total delay in the finely discretized 
all-pole version, are tolerable in practical applications. 

Analog VLSI implementations of the filter-cascade cochlea model are cur
rently being explored at a number of laboratories around the world. The ideal 
of a practical micropower real-time artificial cochlea circuit is rapidly coming 
closer to reality. 
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