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Abstract

Explicit neuron firing models are investigated for use in computa-
tional modeling of auditory processing. Models for primary auditory
neurons are driven by the receptor signal from a hair cell model, which
is driven in turn by a filtering model of basilar membrane motion.
The output of the primary auditory neuron model is a times-of-firing
representation of neural signals. Certain types of processing, such as
auto-correlation and cross-correlation, are very simple with this rep-
resentation, not requiring multiplication. The neuron model used is
a leaky-integrate-to-threshold model with a refractory period. Several
neurons are modeled at each hair cell, or filter channel. It is found in
experiments with these models that the detailed time-of-firing informa-
tion contains most of the cues of speech formants, pitch, direction, etc.
The more conventionally studied firing rate vs. place representation
misses important aspects of these cues. Models of pitch perception,
binaural directional perception, and sound separation are being based
on the cochlear and neural models. The models are all implemented as
computational algorithms, and are used in support of related speech
recognition and hearing research.

1. Introduction

The brain receives all of its inputs in the form of neuron firings on
specific fibers at specific times. We explore the application of this type
of discrete-event signal representation to the problem of hearing, with
a view to using it as a practical representation of sound signals for
use in speech recognizers. The problem naturally fits time-and-place
domain algorithms, with place representing specific fibers or groups of
fibers. The algorithms we want are simulations, or computational mod-
els; hence, we reject at the outset any model that depends heavily on
a mathematically abstract concept such as frequency, or instantaneous
firing rate, or probability of firing. We discuss our experience with sim-
ulations of cochlear models, models of primary auditory neuron firings,
and models for further processing of nerve firings to access cues such
as pitch, formants, binaural time of arrival difference, etc.

2. Motivation and Approach

The mammalian auditory system represents an amazing technical
mechanism that can detect, separate, and recognize an amazing vari-
ety of complex waveforms carried as waves in air. Over the last century
or 50, modeling and describing our mechanisms of hearing has been an
active scientific pursuit. There has been tremendous progress in under-

standing hearing, especially from the points of view of psychophysics
and physiology. Despite this progress, scientists and engineers study-
ing speech and hearing still do not typically use hearing models much
more sophisticated than the Fourier analysis model originally espoused
by Ohm and Helmholtz. This crude model makes it difficult for them
to relate new models and experimental results to details of reality. The
present line of investigation seeks to apply the modern tools of sig-
nal processing and discrete simulation of physical systems to provide a
new substrate of front-end analysis techniques that are more realisti-
cally related to hearing. These new techniques provide an alternative to
Fourier analysis that will hopefully allow more progress to be achieved
in studies of hearing. Having a complete runable and testable set of
model algorithms will provide a place for plugging in and testing new
and improved models for the various mechanisms of hearing. These al-
gorithms, or computational models, are also expected to be very good
candidates for the front end of a high performance speech recognition
system.

The basic approach in this work is to look at what sounds do to you
when they impinge upon your ears. There are many layers of acoustic,
mechanical, electrochemical, and neural processes that can be exam-
ined and modeled from the front in, or as bottom-up, data-driven algo-
rithms. As each layer is modeled by an algorithm, experimented with,
and compared with what is known of reality, new insights can be gained
about the representation of information at each layer; eventually, the
synergies between the layers of processing become visible. The systems
of algorithms that result are not easy to describe in the conventional
language of mathematical signal analysis, since the layers are not gener-
ally linear, or time-invariant, or otherwise ideal. These algorithms are
termed computational models, as they represent computations that at-
tempt to mimic the hearing system; they are not primarily useful for
describing or analyzing the hearing system. Previous reports on this
line of work [1, 2] cover some of the basic functions of the ear, and some
models of internal processing, but do not cover any explicit modeling
of neuron firings. This paper describes some explorations of explicit
neuron models and the implications of using the discrete neural event
representation of signals.

A specific goal of this work is to investigate how to effectively use
the fine time structure of the signals transduced by the cochlea. A
major thesis is that this information is very important to signal sep-
aration; that is, the brain uses more than short-time power spectrum
information—it is sensitive to phase in useful ways.

We are also motivated in these efforts by the observation that re-
gions of brain tissue, which are basically two-dimensional sheets with
parallel wiring through the third spatial dimension, are tonotopically
(or cochleotopically) organized in one dimension; it is fascinating to
consider how the other dimension is utilized. The two specific tech-
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niques that have been investigated, auto~correlation for periodicity per-
ception and cross-correlation for binaural lateralization, both produce
two-dimensional “images” which are reasonable candidates for the kind
of information that could be projected onto cortical auditory areas, or
other neural structures at intermediate levels of the nervous system.
These images change relatively slowly, compared to the bandwidth of
the outputs of the primary auditory neurons. Perhaps there are many
more types of processing, at all levels of the nervous system, that con-
vert fine time structure to slowly changing spatial structure.

3. Cochlear Filtering and Transduction Models

This investigation is based on a version of the cochlear filtering, com-
pression, and detection models presented in [1]. The filtering stage is an
unusual form of filterbank, consisting only of 2 single cascade of second-
order canonic sections (this is an optimization of the cascade/parailel
filterbank of [1], with particular parameters that allow rearrangement
of the poles). For 2 given amount of computation, this model allows
about three times as many channels as a typical sixth-order per chan-
nel paralle] filterbank. The transfer functions are alsc much better fits
to the real transfer functions of basilar membrane motion, since this
filter form is derived from a physical model of wave propagation in the
cochlea.

The transduction process is modeled by a compressive network (sev-
eral stages of coupled automatic gain controls) and an explicit mecha-
nistic model of detection, adaptation, and smoothing in the hair cell.
The coupled AGC network is greatly simplified frcm that presented
in [1], involving only connections between nearest neighboring places.
Several cascaded stages (as opposed to the nested stages proposed in
[1]) serve to approximately model various possible mechanisms of adap-
tation, with different time constants and spatial extents, in the middle
and inuer ear. These stages reduce the dynamic range seen by the hair
cell model, and hence reduce the amount of point-wise compression that
each hair cell must do; the result is that time-domain contrast between
loud and very-loud are maintained, whereas that contrast would be lost
without the compression stages.

4. The Hair Cell Model

The hair cell model is taken almost exactly from Allen [3], by as-
suming that that model applies identically to every chanme!l, with no
interactions. Since that model’s adaptation behavicr depends on cell
membrane currents, both resistive and capacitive, it might be a better
assumption to add some membrane currents between adjacent cells.
This would have much the same effect as a fast fairly-local coupled
AGQC stage, which was used instead. Allen’s mode! attempts to expiain
adaptation only in intervals less than 50 msec, and so ignores the need
for adaptation stages in addition to the hair cells. His hair-ceil model
converts mechanical displacement to a variable resistance through 2 hy-
perbolic cosine (soft half-wave) nonlinearity; this resistance controis the
fiow of current between an external battery (endolymph potential) and
the cell’s internal “receptor potential”. Charge inside the cell is stored
on the membrane capacitance, and leaks out through the membrane re-
sistance. As the voltage inside the cell increases with stimuiation, the
voltage across the variable resistance declines, reducing the instanta-
peous local gain of the transduction process. Note that the gain change
is after the nonlinearity; very large inputs will drive the variable resis-
tance in almost an on/off mode, 5o that timing will be preserved, but
amplitude information will be suppressed.

According to the model, the stimulus seen by the primary auditcry
peurons is the current out of the cell membrane, including both resis-
tive and capacitive components. The resistive component of this recep-
tor current is proportional to the so-called receptor potential, which
has been measured experimentally and conforms to the moedel. The

capacitive component iz proporiional to the derivative of the recep-
tor potential, and hence contains more high frequency information, as
peeded to accouni for the cobserved levels of merve firing synchrony.
Finally, the current output is smoothed with a time constant of about
150 microseconds, modeling the diffusion of ions within the hair cell,
and reducing waveform synchrony above several kilohertz.

5. Primary Audltory MNeuron Models

There are many types of neuron medels, including simple logic-gate
models, dendritic tree circuits, and stimulus/rate functions. But to gen-
erate explicit Sring data from a receptor signal, a time-domain stochas-
tic simulation type of model is needed. The most popular such model
i5 the “integrate to threshold” (ITT) model, in which a stimulus input
is integrated until the integrsl reaches a threshold (which may have
been randomly chosen}; then the neuron fires, the integral is reset to
zero, and integration continues immediately. For such a mode], aver-
age firing rate and instantaneous probability of firing are well-defined,
and simply proportional to the (non-negative) stimulus input. A post-
stimulus-time or period histogram of firings from such a model wili
always have exactly the same shape as the input stimulus, plus Poisson
noise.

To enforce a refractory period, or minimum delay between firings,
a common practice is to simply hard-limit the input to z level that
corresponds to the appropriate maximum firing rate. Thus the delay
from the onset of a strong stimulus to the first firing can be as long as
the refractory period; this is unrealistic, and causes 2 loss of important
information about the exact time of onset of strong stimuli. A better
model of refractoriness is to simply wait for a prescribed (possibly ran-
domized) time after each firing before continuing to integrate from the
reset level. Thus, all neurons that happen to not be in their refrac-
tory state can fire arbitrarily soon after the onset of a strong encugh
stimulus. The result is that neurons typically become phase-locked
{or injection-locked) to some component of the fine time structure of
strong stimuli. Neuron firing histograms become sharpened, as stimu-
lus peaks “capture” firing times. The history dependence intreduced
by this simple refractory mechanismn makes it difficult to say much
meaningful about instantaneous probability of firing, or even average
firing rate; we happily abandon these concepts in favor of studying the
actual firing behaviors.

A popular refinement of the ITT model is the leaky-ITT model,
in which the integrator is replaced by a leaky integrator (a one-
pole lowpass filter with large finite gain at DC). In addition to the
gain /threshold and refractory-time parameters of the ITT model, the
leaky-ITT model also has a time-constant parameter. In studies of pop-
elations of neurons, all these parameters are chosen randomly within 2
small range, to avoid totally deterministic identical behaviors; we also
sometimes introduce a randomized reset level in our studies, though
this is of little effect.

Just as the refractory model led to a way to “clean up” information
about timing of strong stimuli by sharpening bistograms, the leaky-ITT
model can help clean up the representation of weak stimuli. When no
signal is present, the rest-level receptor signal, the output of the hair-
cell modei, is 2 small positive value. If the leak is such that the rest-
level times the DC gain of the leaky integrator is very near threshold,
then the rest firing rate of the neuron will be zero or slightly positive.
Under this condition, the neuron will be exquisitely sensitive {o slight
variations above and below the rest stimulus level, as its leaky inte-
grator output is usually sitting just below threshold. The degree of
phase locking will be much higher than in a straight ITT model with
its higher rest firing rate. It is not known to what extent real auditory
neurons conform to this model. Perhaps the observed population of
low-spontaneous-rate neurons manage to adjust themselves to operate
in this sensitive mode, while high-spontaneous-rate neurons do not.
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In our simulations, we use a single randomized population over a
wide range of rest rates (0 to 60 firings per second, averaging about
25). At high stimulus levels, the average firing rates are around 150
per second; peak rates, averaged over 5 msec after a sound onset, are
about 300 per second. Most experiments are done with 20 kHz sample
rate, 92 cochlear model channels, and 24 neurons per channel, for a
total population of 2208 neurouns; this is around a factor of 20 fewer
than the number of afferent primary auditory neurons in humans, so
our results are somewhat noisy. A short section of a typical neuron
firing pattern is shown in figure 1, along with the speech waveform
that elicited it; each dot represents one or more neuron firings at a
particular channe! and time index.

Figure 1. Speech waveform and the resulting neurogram,
with the basal {high frequency) region at the bottom.

8. Software Representation of Models and Firing Data

All the models mentioned are implemented as signal types in the
signal representation language SRL [4]; all programming and experi-
mentation are done within the SRL/ISP [5] integrated signal process-
ing environment on Symbolics model 3600 Lisp machines. A class of
signals called array-valued-signal-type, or arrsig for short, were imple-
mented to allow a time-domain next-state-simulation approach to be
embedded within the structure of SRL; all these signals are functions
of asingle time index into a range of arrays of numbers, as opposed to a
range simply of numbers, For example, the fetched value of an instance
of hair-cell-bank-arrsig-type at a particular time index is an array of
floating-point receptor current values; and for a primary-neuron-bank-
arrsig-type, an array of 1-bit values indicating whether each neuron
fired at that time (within a 50 micro-second sample interval).

For many kinds of processing, it is not interesting exactly which
neurons fired at each time, but only how many neurons fired at each
frequency channel at that time. For these applications, an instance of
count-neuron-bank-arrsig-type returns an array of 8-bit firing counts,
If desired, a multi-neuron-bank-arrsig-type can be used to represent
multiple neurons as 2208 separate channels of 1-bit values.

Correlation (or coincidence) arrsigs return two-dimensional arrays of
counts of coincident firings at various delays for each channel, within
a selected slower sample interval, Internally, they save a history of
input firings from a count-neuron-bank as a linked list of events; times
and channels with no firings use no storage and no further processing.
Correlation is implemented with only simple counting—multiplication
s not used. Allocation and freeing of history lists is handled explicitly,
with the garbage collector turned off, for speed and space economy.

Such two-dimensional arrsigs can be displayed as animated sequences
of frames by converting to a movie-arrsig-type, which keeps dithered
1-bit arrays in a form convenience for quick display. These movies
are fascinating to watch, and are plausible candidates for the kinds of
representation that a hearing-impaired person might be able to learn
to recognize visually in real time.

7. Correlation Processing of Neural Events

So far, the uses we have made of the neural firing information include
the auto-correlation-based pitch perception model of Licklider [6], and
the cross-correlation-based binaural lateralization model of Jeffress [7].
Both models turn out to be easier to implement with the nerve firing
data than with “analog” numeric values that represent something like
instantaneous probability of firing; at least, this is true given the rela-
tively small number of neurons that we model. As far as we are aware,
these models have not previously been implemented and seriously ex-
perimented with.

As mentioned above, we can compute exact correlation functions,
on waveforms that are integers and mostly zeroes, by simple counting
and adding operations. Since the implementation is equivalent to us-
ing coincidence detectors, or AND gates, instead of multipliers, we also
refer to the results as auto-coincidence functions and cross-coincidence
functions. Each frame of the coincidence function output is an array of
counts of how many pulses coincided for each delay and channel index.
Correlation is inherently a square-law type of operation, so it doubles
the dynamic range of an input; therefore, it is good that the neuron
firing rates have relatively little dynamic range, so the coincidence out-
puts do not need too much dynamic range.

The outputs of these models are further processed, though not cur-
rently through neural models of any sort, to try to separate out sounds
based on directional, periodicity, and frequency continuity cues, among
other things. Two of our separation efforts with earlier representations
are reported in [2] and [8].

8. The Place-Invariance Principal

In many models of auditory processing, stages that follow the
cochlear filtering are tuned in some way to the specific CF of the chan-
nel that they process. For example, in [9], each channel has an accurate
delay equal to the resonant period of the filter channel whose output
it processes. Since it is hard to imagine how neural mechanisms could
be tuned as accurately and with as much stability as the mechanical
resonances in the cochlea, we prefer to avoid such models, and adopt
instead a strongly contrary principal. The place-invariance principal
simply states that no channel of the model beyond the cochlear fil-
tering stage is allowed to use any parameter that explicitly represents
its place or frequency; each channel is, however, allowed to know its
neighbors above and below.

This principal is in direct conflict with the traditional notions of
frequency mapping into place, and place being directly perceived on
a high-low scale through the “principal of specific nerve energies”,
which holds that a perception is determined primarily by which nerves
fire. Preliminary supportive evidence for the place-invariance principal
comes from the cochlear implant project at Stanford (private commu-
nication), where a patient who had never heard with one of his ears was
found to have no ability to rank place of stimulation in that ear; this
patient also had better than usual ability to rank pulse rate. Other pa-
tients, who had heard before, generally had a clear perceptual ranking
of place into a degree of “shrillness”, or some such frequency-like con-
cept distinct from pitch, indicating that the association between place
and frequency may be learned, based on time patterns.

9. Cues for Speech Recognition

The relatively sharp phased-locked response of the neuron models
leads to good sharp correlation peaks, especially at the pitch period;
experiments show them to be much sharper than the correlation peaks
of the receptor currents, or other “analog” signals. In addition to pitch
structure, the two-dimensional auto-coincidence function patterns are
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also quite good at showing formants as groups as channels with similar
patterns across the delay dimension; that is, energy from a strong reso-
pance “recruits” neurons from places of higher CF ¢ fire in synchrony
with the resonance, and this time-pattern is easily seen in Licklider's
pitch model. We therefore regard his “duplex theory of pitch percep-
tion” to be applicable to many more perceptual effects than just pitch.
Bursts, fricatives, etc., all have characteristic patterns in this represen-
tation. Figure 2 shows a sample of the coincidence function for the
vowel [if of figure 1; correlates of periodicity, formants, harmonics,
and high-frequency envelope modulation are apparent.

The more traditional rate vs. place representation of spectral shape
turns out to be less useful. Just as in physiological observations, the
model's rate vs. place function flattens out very quickly at moderate to
high loadness, and hence carries very little informatior about formants
or other prominent spectral features.

The strength of this approach in a speech recognition application is
not expected just on the basis that cues are present in the coincidence
functions; rather, it is the hoped that cues about interfering sounds are
present in a form that allows them to be recognized as non-spesach, or
as different speakers.

10. Other Applications of the Models

An explicit computational model of hearing can be a very useful tool
to someone doing research in mechanisms of hearing, as it provides a
framework in which to evaluate the effect of a proposed model change
or new feature. Studies of the hearing ability of animals, such as bats
and barn owls, could also benefit from the availability of such medels.

We have experimented with applying these models, with adjusted
parameters, to simulated echolocation signals of bats, which are
downward-sweeping FM chirps. Behavioral studies show a time-delay
jnd of as low as 0.5 microsecond in some bats {10]; outputs of our mod-
els show auto-correlation peaks almost sharp enough to account for
this, and help to illustrate why the particular choice of a downward-
sweeping chirp optimizes timing accuracy.

Barn owls show good phase-locking to signals as high as 9 kHz, and
are the only animal known with angular binaural lateralization accu-
racy as good as humans [11]; they need this higher frequency phase
locking because their ears are closer together than ours. In both owls
and humans, the geometry of the outer ear also plays an important
role in localization of sound sources; the effects of models of the outer
ears could profitably be examined through good computational hearing
models.

11. Hardware Architecture Impact

At Fairchild, we are also interested in VLSI computing architectures
appropriate for implementing hearing models in real time. Our first
experimental architecture, the multi serial signal processor (MSSP),
appears to be very good for implementing cochlear filtering, compres-
sion, and hair cell models, and several primary auditory neuron models
per channel, since it was designed to operate with conventional 32-bit
fractions. Coincidence processing of the neural firing data will require
another very different architecture; but the job will be much easier, and
will require much less memory, than it would if conventional numeric
approaches were used. It appears to make sense to put an architectural
boundary at the same place as a data representation boundary.

Figure 3. A sample of the auto-coincidence function of the
neuron firings from figure 1, with high frequencies at the top.
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